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Abstract

Using Reissner�s principle, we formulated an equation of motion for a beam according to higher-order beam theory.
We derived the Laplace transform of the equation and investigated wave-propagation behavior under transverse im-

pact. In other words, we studied the effect of the nonlinear component of axial-warping, which cannot be determined by

a conventional approach such as the Timoshenko beam theory. Specifically, we derived the transfer matrices for finite

and semi-infinite beams. By choosing the appropriate state quantities, arrangement as a vector, and definition of sign

convention, we were able to derive a perfect ‘‘reciprocal relation.’’ In spite of the complicated Laplace inverse trans-

form, we obtained an accurate and rapid solution by investigating appropriate branch points and poles and setting

branch cuts. The extent of the nonlinear warping effect and its region of influence were also clearly demonstrated.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of beams under transverse impact has a long history in beam theory. The main methods

employed in the analysis are mode superposition (Anderson, 1953), Laplace transform (Boley and Chao,

1955), characteristics-based analysis (Plass, 1958), wavefront expansion (Thambiratnam, 1984) and the

finite element method (Yokoyama and Kishida, 1982). Among these, the finite element method (FEM) is

well known as an efficient means of analyzing wave propagations in beams and/or structures with com-
plicated boundaries. However, a large number of finite elements must be used to adequately model beams

and structures. Furthermore, the higher the frequency, the larger the number of elements that must be used.

The Laplace transform technique yields a theoretically exact solution within the bounds established by

the simplifying assumptions for the beam. However, because deriving the Laplace inverse transform is
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generally complicated and difficult, the Laplace transform technique is usually not the method of choice. In

this study, we expanded the governing equation for the Timoshenko beam, which is generally thought to be

a standard, into the governing equation for higher-order beam theory. Specifically, we formulated the

equation of motion for any higher-order warping (Usuki and Maki, 2001) by applying the energy principle,
which uses Reissner�s functional. This provides greater accuracy when describing impact behavior. How-
ever, if we increase the approximation of the beam theory by only a single step, the formula becomes

extremely complicated. In this study, we dealt with an equation of motion for a beam up to the first step as

an example calculation; namely, we handled simultaneous partial differential equations having three un-

known functions. Thus, the effect of nonlinear axial-warping could be taken into account.

For the Browmwich integral of a function that has been inversely transformed, key elements are to set up

accurate branch points and poles on a complex plane and to introduce appropriate branch-cutting. The

contribution from the integral values can be given by branch cuts, by branch points, and/or by poles. Thus,
we studied the mechanism of how the integral value is given in each case. In analysis of the beam-impact

problem, fundamental solutions to a governing differential equation for the beam play an important role.

As a function of complex variable p of Laplace transform, the roots of the characteristic equation vary
along the branch cut, with roles changing at the branch points. For this integral calculation, we pursued

various approaches in an attempt to derive a simple, correct theoretical analysis, and we succeeded in

achieving exact results. By comparing our results with the conventional Timoshenko beam calculation as

well as with the numerical integral, we were able to verify the exactness of our calculation.

In the ordinary transfer matrix method in time domain, if we properly define the state quantities and
their sign convention, we can formulate a ‘‘reciprocal relation’’ for which the transfer matrix element be-

comes symmetrical with respect to the subsidiary diagonal line. In this study, we showed that this relation

can exist in the Laplace-transformed space. In addition, we numerically proved that this ‘‘reciprocal re-

lation’’ can be established in the inversely transformed space as well. Moreover, we confirmed this from the

distribution of a semi-infinite beam state function in the axial direction, as an example numerical calcu-

lation. Then, we numerically calculated the extent of the effect of the nonlinear warping in the axial

direction and the range of the effect.

2. Coordinate system

We chose a coordinate system in which the x axis passes through the neutral axis of a beam of constant
height h, width b, and axial length L; the y axis, which is horizontal in the coordinate space, perpendicularly
intersects the x axis; and the z axis is in the beam-height direction. These x, y, and z axes form a right-

handed coordinate system. The z axis is perpendicularly downward of the y axis in a clockwise direction.
The displacement components for the x, y, z directions at point Pðx; y; zÞ in the beam are denoted by u, v, w,
respectively (Fig. 1).

Fig. 1. Coordinate system.
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The theory developed here is a restricted version for bending about a principal axis y, derived from
Usuki�s general theory for thin-walled beams (Usuki and Sawada, 1999) and thin plates (Usuki and Maki,
2000). To study the fundamentals of beam impact behavior, a simple rectangular cross section is treated in

this paper. As the theory can be used to estimate arbitrarily higher-order shear lag, the applicable range of
beam ratio h=L is greater than 5. In order to avoid cross-sectional distortion, the applicable range of beam
ratio b=h is limited to less than 2.

3. Governing equation

3.1. Basic conditions

According to the infinitesimal displacement theory, the relation between strain and displacement be-

comes (Timoshenko and Goodier, 1970):

exx ¼
ou
ox

; ezz ¼
ow
oz

; czx ¼
ou
oz
þ ow

ox
: ð1Þ

Constitutive equations with Young�s modulus E, shear modulus G and Poisson�s ratio m are:

rxx ¼ Eexx; rzz ¼ Eezz; szx ¼ Gczx: ð2Þ

Following the engineering bending theory of beams, we ignored the components of transversal strain
components with Poisson�s ratio m.
Denoting the i direction component of the body force by qbi, the equilibrium equation for stress in an

infinitesimal rectangular parallelepiped is

orxx

ox
þ oszx

oz
þ qbx ¼ q

o2u
ot2

;

osxz

ox
þ orzz

oz
þ qbz ¼ q

o2w
ot2

;

9>=
>; ð3Þ

where q denotes the mass density of the body and t denotes time.

3.2. Equation of motion for a beam

The shear stress szx is obtained from the equilibrium equation (3a) of stress by integration in the z di-
rection. From this result, the shear strain czx is given by the constitutive equation (2c). Therefore, although

this shear stress satisfies the equilibrium equations, it does not satisfy the strain–displacement relation (1c).

The axial warping function uðt; x; zÞ is corrected so as to satisfy the strain–displacement relation (1c) for a
fixed cross-sectional displacement function wðt; x; zÞ. From this corrected warping function, the axial strain
and axial stress of first-step correction can be obtained. After the N th step correction of this operation,
displacement functions are obtained as follows (Usuki and Sawada, 1999; Usuki and Maki, 2000).
When the vector of the unit-warping function in the axial direction of the beam is expressed as ZðzÞ and

the vector of the cross-sectional rotation accompanying bending deformation of the beam is expressed as

hðt; xÞ, the displacement is determined as

uðt; x; zÞ ¼ �ZTðzÞhðt; xÞ;
wðt; x; zÞ ¼ wðt; xÞ:

�
ð4Þ

Here, displacement in the beam-height direction, w, is independent of z; i.e., the coordinate along the height
axis. Therefore, this is substituted into the strain displacement relation given by (1), yielding:
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exxðt; x; zÞ ¼ �ZTðzÞ o
ox

hðt; xÞ;

cxzðt; x; zÞ ¼
owðt; xÞ

ox
� o

oz
ZTðzÞhðt; xÞ;

ezzðt; x; zÞ ¼ 0:

9>>>>>=
>>>>>;

ð5Þ

Components of the vector of the unit warping function, ZðzÞ, the vector of the unit shearing function, SðzÞ,
and the vector of cross-sectional rotation hðt; xÞ of the beam are given as

ZTðzÞ ¼ ½ Z0ðzÞ Z1ðzÞ � � � ZNðzÞ �;
STðzÞ ¼ ½ S0ðzÞ S1ðzÞ � � � SN ðzÞ �;
hTðt; xÞ ¼ ½ hy0ðt; xÞ hy1ðt; xÞ � � � hyN ðt; xÞ �:

9>=
>; ð6Þ

The unit warping function at the zeroth step is the same as that in engineering beam theory; namely

Z0ðzÞ ¼ z ð7Þ
and the corresponding cross-sectional rotation is hy0ðt; xÞ. Elements of the unit warping function vector,
ZðzÞ, beyond the zeroth step are set to be mutually orthogonal (Usuki and Sawada, 1999).
By substituting the longitudinal displacement equation (4a) into Hooke�s law, given by Eq. (2), we obtain

the normal stress rxxðt; x; zÞ in the axial direction. Then, by substituting the result into the equilibrium
condition of stress in the axial direction, given by Eq. (3a), we obtain the shearing stress, szxðt; x; zÞ. When
no inertial force or body force is present, the equation becomes

rxxðt; x; zÞ ¼ �EZTðzÞ o
ox

hðt; xÞ;

sxzðt; x; zÞ ¼ E
STðzÞ
bðzÞ

o2

ox2
hðt; xÞ;

9>>=
>>; ð8Þ

where the unit shearing function is set to

SðzÞ ¼
Z z

�h=2
ZðzÞdA: ð9Þ

The warping moment vectorMðt; xÞ and the shearing force vector Qðt; xÞ are defined as the integral over
the sectional area of the beam cross section A, or as

Mðt; xÞ ¼
R
A rxxðt; xÞZðzÞdA;

Qðt; xÞ ¼
R
A sxzðt; xÞ _ZZðzÞdA:

)
ð10Þ

Components of these vectors are denoted as

MTðt; xÞ ¼ ½My0ðt; xÞ My1ðt; xÞ � � � MyN ðt; xÞ �;
QTðt; xÞ ¼ ½Qz0ðt; xÞ Qz1ðt; xÞ � � � QzN ðt; xÞ �:

)
ð11Þ

By substituting Eq. (8) into the stress component in the right-hand side of Eq. (10), we express the stress

resultants as

Mðt; xÞ ¼ �EF
o

ox
hðt; xÞ;

Qðt; xÞ ¼ �EF
o2

ox2
hðt; xÞ:

9>>=
>>; ð12Þ
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In this equation, the warping resistance matrix F is defined as

F ¼
Z

A
ZðzÞZTðzÞdA: ð13Þ

In matrix form, this is

F ¼

Iy0 0

Iy1

. .
.

0 IyN

2
6666664

3
7777775
: ð14Þ

The first element Iy0 of the diagonal elements is the moment of inertia of bending rotation around the y axis
of the cross section. The unit warping functions beyond the zeroth step are normalized so that the total
warping resistance is equal to the moment of inertia of the cross section.

The displacement components on the right-hand side of Eq. (12) are expressed using the stress resultants

on the left-hand side. Then, when this is substituted into Eq. (8) of stress, the results are as follows:

rxxðt; x; zÞ ¼ ZTðzÞF�1Mðt; xÞ;

sxzðt; x; zÞ ¼ �
STðzÞ
bðzÞ F

�1Qðt; xÞ:

9>=
>; ð15Þ

In order to derive an equation of motion for a beam, we applied Hamilton�s principle in conjunction
with Reissner�s functional w (Vinson and Chou, 1975). Given that the kinetic energy of the structural

system from the beginning of time t0 until t1 is T , the functional given below takes the extreme value

when the boundary condition, the equilibrium condition of stress, and the stress displacement relation are
satisfied.

U ¼
Z t1

t0

ðT � wÞdt: ð16Þ

That is, the following holds:

dU ¼ 0: ð17Þ
The kinetic energy of a beam bending, T , is expressed as

T ¼
Z L

0

Z
A

1

2
q

ou
ot

� �2"
þ ow

ot

� �2#
dAdx: ð18Þ

When we substitute displacement equation (4) into the above equation and integrate with respect to the

independent variable z in the beam-height direction, we obtain

T ¼
Z L

0

1

2
q

ohT

ot
F
oh

ot

�
þ ow

ot
A
ow
ot

�
dx: ð19Þ

Reissner�s functional is shown as

w ¼
Z

R
H dR�

Z
R
Fiui dR�

Z
St

Tiui dS; ð20Þ

where St is the portion of S on which stresses are prescribed; H ¼ rijeij � W ðrijÞ and W ðrijÞ is the strain
energy function in terms of stresses only.
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The strain energy function in terms of stresses only is written as follows. For an isotropic material:

W ¼ 1

2E
r2xx

h
þ r2yy þ r2zz � 2mðrxxryy þ ryyrzz þ rzzrxxÞ þ 2ð1þ mÞ r2xy

�
þ r2yz þ r2zx

�i
: ð21Þ

In the case of a beam subjected to a distributed transverse load qðt; xÞ, a concentrated transverse
load Q	z0, a distributed axial load pðx; z; tÞ, and a concentrated axial load Px, Reissner�s functional
is

w ¼
Z L

0

Z
A

�
� rxxZ

T oh

ox
þ rxz

ow
ox

�
� oZT

oz
h

�
� 1

2E
MTF�1Z
� �

ZTF�1M
� ��

þ 2ð1þ mÞ QTF�1
S

bðzÞ

� �
ST

bðzÞF
�1Q

� ���
dAdx

�
Z L

0

qðt; xÞw
�

�
Z

A
pðt; xÞudA

�
dx� Q	z0w

�
� Pxu

�
: ð22Þ

Here, we introduce a base vector e1 such that only the first element is 1 and the other elements are zero.
Namely, the base vector is defined as

eT1 
 ½ 1 0 � � � 0 �: ð23Þ
By combining this base vector and the unit warping function vector equation (6a) and considering

Eq. (7), we obtain the relation

oZT

oz
e1 
 1: ð24Þ

Premultiplying this, as a dummy, by ow=ox of Eq. (22) and integrating over the area of the cross section,
we obtain

w ¼
Z L

0

�
�MT oh

ox
þQT e1

ow
ox

�
� h

�
� 1

2
MTðEFÞ�1M

�
þ 1
2
QTðGAk0Þ�1Q

��
dx

�
Z L

0

qðt; xÞw
�

�mTðt; xÞh
�
dx� Q	z0w

�
�M	Th

�
: ð25Þ

The coefficient matrix of the shear correction k0 in the above equation is the symmetry matrix, which is
defined as

k0 ¼ 1
A
FR�1F: ð26Þ

The shearing resistance matrix R on the right-hand side can be calculated from the equation

R ¼
Z

A

SðzÞ
bðzÞ

STðzÞ
bðzÞ dA: ð27Þ
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Specifically, the matrix can be denoted as

R ¼

R00 R01 0

R10 R11 R12 . .
.

0

0 R21 R22 . .
.

. .
. . .

. . .
.

. .
. . .

. . .
.

. .
.

RN�2;N�2 RN�2;N�1 0

0 . .
.

RN�1;N�2 RN�1;N�1 RN�1;N
0 RN ;N�1 RN ;N

2
666666666666664

3
777777777777775

: ð28Þ

This becomes a symmetric band matrix which has nonzero values only in the diagonal elements and in

the elements to their immediate right and left sides.

The distributed bending couple mðt; xÞ and the concentrated bending couple M	ðt; xÞ are defined as

mðt; xÞ ¼ �
R
A pðt; x; zÞZðzÞdA;

M	ðt; xÞ ¼ �Pxðt; x; zÞZðzÞ:

�
ð29Þ

By substituting the functional (25) and the kinetic energy equation (19) into Eq. (16), we obtain

U ¼
Z t1

t0

Z L

0

1

2
q

ohT

ot
F
oh

ot

��
þ ow

ot
A
ow
ot

�
þMTh0 �QT e1

ow
ox

�
� h

�

þ 1

2
MTðEFÞ�1M

�
þ 1
2
QTðGAk0Þ�1Q � qðt; xÞwþmTðt; xÞh

��
dxdt � Q	z0wþM	Th: ð30Þ

Taking the variation under condition (17) that Eq. (30) takes the extreme value, we obtain the motion

equation and the relation between the stress resultants and displacements as follows

oM

ox
�Q �mðt; xÞ þ qF

o2h

ot2
¼ 0; ð31Þ

oQz0

ox
þ qðt; xÞ � qA

o2w
ot2
¼ 0; ð32Þ

ðEFÞ�1M þ oh

ox
¼ 0; ð33Þ

ðGAk0Þ�1Q � e1
ow
ox

�
� h

�
¼ 0: ð34Þ

Eqs. (33) and (34) can also be written as the constitutive equations of stress resultants.

M ¼ �EF
oh

ox
; ð35Þ

Q ¼ GAk0 e1
ow
ox

�
� h

�
: ð36Þ

The relation (12b) between shearing force Q and the rotation of cross section h is transformed to the

constitutive equation (36) of a Timoshenko type beam. As shown in formula (11b), the shearing force Qz0 of
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the zeroth step is the first element of the vector of shearing force Q. Thus, we eliminate the first element
from the right-hand side of formula (36) by premultipling the vector eT1 as shown in the equation
below.

Qz0 ¼ GAeT1k
0 e1

ow
ox

�
� h

�
: ð37Þ

The boundary condition is as follows.

dh M �M	ð Þ½ �L0 ¼ 0;
dw Qz0 � Q	z0
� �� �L

0
¼ 0:

)
ð38Þ

3.3. Differential equation with one deformation vector

By substituting the constitutive equations (35)–(37) into the governing equations of motion (31) and (32)

for stress resultants and the displacement components, we obtain the governing equations for the dis-

placement components as

o

ox
EF

oh

ox

� �
þ GAk0 e1

ow
ox

�
� h

�
� qF

o2h

ot2
¼ �mðt; xÞ; ð39Þ

o

ox
GAeT1k

0 e1
ow
ox

��
� h

��
� qA

o2w
ot2
¼ �qðt; xÞ: ð40Þ

In the case of a constant cross section along the direction of the beam axis, if we delete the deflection w
from these two simultaneous differential equations, we obtain the formula of the rotation vector h:

EF
o2

ox2

�(
� GAk0 � qF

o2

ot2

�
o2

ox2

�
� q

Gk
o2

ot2

�
þ GA

k0

k
e1e

T
1k
0 o

2

ox2

)
h

¼ k0

k
e1

o

ox
qðt; xÞ � o2

ox2

�
� q

Gk
o2

ot2

�
mðt; xÞ; ð41Þ

k in the above formula indicates element k00 in the first column of the first row within the coefficient matrix
of shear correction k0. The element of this matrix can be extracted by multiplying from the front and back
of the coefficient matrix by the base vector e1; namely,

k 
 k00 ¼ eT1k
0e1: ð42Þ

Warping resistance F is a diagonal matrix; however, the coefficient matrix of shear correction k0 is
generally a symmetric matrix in which all elements have nonzero values. Therefore, in order to formulate a

differential equation for a single deformation quantity, we have to transform it by elimination. That is, we

start with a Bernoulli/Euler beam and a Timoshenko beam of fourth-order; the number of orders of the

differential equation for a single deformation quantity will increase by two orders every time we consider a

shear-lag of one step.

From here on, we explain the theory and give a numerical example, considering up to the first step of
shear-lag. If we can accept the complexity of calculation and are willing to go further, we can use the same

method to obtain a solution that considers the second step of shear-lag or beyond.
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3.4. Differential equation of one deformation quantity

When we consider only up to the first step of shear-lag, the main vectors are as follows:

Mðt; xÞ ¼ My0ðt; xÞ
My1ðt; xÞ

� �
;

Qðt; xÞ ¼ Qz0ðt; xÞ
Qz1ðt; xÞ

� �
;

hðt; xÞ ¼ hy0ðt; xÞ
hy1ðt; xÞ

� �
;

F ¼ Iy0 0

0 Iy1

� �
;

k0 ¼ k00 k01
k10 k11

� �
;

ZðzÞ ¼ Z0ðzÞ
Z1ðzÞ

� �
;

e1 ¼
1

0

� �
:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ð43Þ

The coefficient matrix of shear correction k0 is symmetric; thus, k01 ¼ k10. In addition, the diagonal el-
ement of the warping resistance matrix F is

Iy1 ¼ Iy0: ð44Þ
Thus, we normalize the unit warping function Z1ðzÞ.
Hereafter, the warping moment Mðt; xÞ and the shearing force Qðt; xÞ can be expressed as

My0ðt; xÞ
My1ðt; xÞ

� �
¼ �E

Iy0 0

0 Iy1

� �
o

ox
hy0

hy1

� �
;

Qz0ðt; xÞ
Qz1ðt; xÞ

� �
¼ GA

k00 k01
k10 k11

� � ow
ox
� hy0

�hy1

" #
:

9>>>=
>>>;

ð45Þ

Governing Eqs. (39) and (40) can be presented as

EIy0
o2hy0

ox2
þ GAk00

ow
ox
� hy0

� �
þ GAk01ð�hy1Þ � qIy0

o2hy0

ot2
¼ �my0;

EIy1
o2hy1

ox2
þ GAk10

ow
ox
� hy0

� �
þ GAk11ð�hy1Þ � qIy1

o2hy1

ot2
¼ �my1;

GAk00
o2w
ox2
� ohy0

ox

� �
þ GAk01 �

ohy1

ox

� �
� qA

o2w
ot2
¼ �q:

9>>>>>>>=
>>>>>>>;

ð46Þ

In order to make this formula dimensionless, we define the following quantities.

x1 ¼
x
r
; w1 ¼

w
r
; t1 ¼

c1
r

t; c ¼ E
Gk

; r ¼ Iy0
A

� �1=2
; c1 ¼

E
q

� �1=2
; c2 ¼

Gk
q

� �1=2
: ð47Þ

Using these, we can rewrite the formula of stress resultants (45)

r
My0ðt1; x1Þ
My1ðt1; x1Þ

� �
¼ �E

Iy0 0

0 Iy1

� �
o

ox1

hy0

hy1

� �
;

Qz0ðt1; x1Þ
Qz1ðt1; x1Þ

� �
¼ GA

k00 k01
k10 k11

� � ow1
ox1
� hy0

�hy1

2
4

3
5:

9>>>>=
>>>>;

ð48Þ
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In addition, we define dimensionless stress resultants My0, My1, Qz0, and Qz1.

My0ðt1; x1Þ
My1ðt1; x1Þ

� �

 r

EIy0
My0ðt1; x1Þ
My1ðt1; x1Þ

� �
¼ � o

ox1
hy0

hy1

� �
;

Qz0ðt1; x1Þ
Qz1ðt1; x1Þ

� �

 c�1

GAk
Qz0ðt1; x1Þ
Qz1ðt1; x1Þ

� �
¼ c�1

k
k00 k01
k10 k11

� � ow1
ox1
� hy0

�hy1

" #
:

9>>>=
>>>;

ð49Þ

The governing equations for deformation quantities (46) can also be rewritten using Eq. (47).

o2hy0

ox21
þ 1

c
ow1
ox1
� hy0

� �
þ 1

c
k01
k00
ð�hy1Þ �

o2hy0

ot21
¼ �my0

EA
;

o2hy1

ox21
þ 1

c
k10
k00

ow1
ox1
� hy0

� �
þ 1

c
k11
k00
ð�hy1Þ �

o2hy1

ot21
¼ �my1

EA
;

1

c
o2w1
ox21
� ohy0

ox1

� �
þ 1

c
k01
k00

� ohy1

ox1

� �
� o2w1

ot21
¼ �qðt1; x1Þ:

9>>>>>>>=
>>>>>>>;

ð50Þ

We will use the Laplace transform (Doetsch, 1970). That is, if we define the following equation,

W ðp; x1Þ ¼
Z 1

0

w1ðt1; x1Þe�pt1 dt1;

Hy0ðp; x1Þ
Hy1ðp; x1Þ

� �
¼
Z 1

0

hy0ðt1; x1Þ
hy1ðt1; x1Þ

� �
e�pt1 dt1;

My0ðp; x1Þ
My1ðp; x1Þ

� �
¼
Z 1

0

My0ðt1; x1Þ
My1ðt1; x1Þ

� �
e�pt1 dt1;

Qz0ðp; x1Þ
Qz1ðp; x1Þ

� �
¼
Z 1

0

Qz0ðt1; x1Þ
Qz1ðt1; x1Þ

� �
e�pt1 dt1;

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð51Þ

the derived functions for dimensionless time t1 of deformation quantities are changed to

pW ðp; x1Þ ¼
Z 1

0

o

ot1
w1ðt1; x1Þe�pt1 dt1;

p
Hy0ðp; x1Þ
Hy1ðp; x1Þ

� �
¼
Z 1

0

o

ot1

hy0ðt1; x1Þ
hy1ðt1; x1Þ

� �
e�pt1 dt1:

9>>=
>>; ð52Þ

Then, the relation between the stress resultants and the deformation quantities after Laplace transfor-

mation can be expressed as

My0ðp; x1Þ
My1ðp; x1Þ

� �
¼ � o

ox1

Hy0ðp; x1Þ
Hy1ðp; x1Þ

� �
;

Qz0ðp; x1Þ
Qz1ðp; x1Þ

� �
¼ c�1

k
k00 k01
k10 k11

� � oW
ox1
�Hy0ðp; x1Þ
�Hy1ðp; x1Þ

2
4

3
5:

9>>>>=
>>>>;

ð53Þ

According to formula (50), the equation of motion, which was represented by the deformation quantities

after transformation, will be as follows:

o2Hy0

ox21
þ 1

c
oW
ox1
�Hy0

� �
þ 1

c
k01
k00
ð�Hy1Þ � p2Hy0 ¼ 0;

o2Hy1

ox21
þ 1

c
k10
k00

oW
ox1
�Hy0

� �
þ 1

c
k11
k00
ð�Hy1Þ � p2Hy1 ¼ 0;

1

c
o2W
ox21
� oHy0

ox1

� �
þ 1

c
k01
k00

� oHy1

ox1

� �
� p2W ¼ 0:

9>>>>>>>=
>>>>>>>;

ð54Þ
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The distributed loads qðt; xÞ, my0ðt; xÞ and my1ðt; xÞ are now set to zero. By transposing formula (54a), we
express deformation Hy1 in terms of deformations W and Hy0.

1

c
k01
k00

Hy1 ¼
1

c
oW
ox1
þ o2

ox21

�
� 1

c

�
þ p2

��
Hy0: ð55Þ

Substituting this into formula (54c), we can express deflection W in terms of Hy0.

W ¼
�
� 1

p2
o3

ox31
þ o

ox1

�
Hy0: ð56Þ

By substituting this into formula (54b), we obtain the differential equation for deformation Hy0 alone.

We can also obtain in the same manner, differential equation for deformation Hy1 alone or for deflection W
alone, as shown below.

o6

ox61

�
þ a

o4

ox41
þ b

o2

ox21
þ c
� W ðp; x1Þ

Hy0ðp; x1Þ
Hy1ðp; x1Þ

2
64

3
75 ¼

0

0

0

2
64
3
75: ð57Þ

When we consider the first step of the shear-lag, the fourth-order differential equation of Timoshenko

beam deflection w alone and the fourth-order differential equation of the rotation of cross section h alone,
each being equivalent to the zeroth step in consideration of shear-lag, become sixth-order differential

equations. The coefficients for the differential equation are shown below.

a ¼ � 1

c
k11
k00
� k210

k200

� �
þ p2ð2þ cÞ

� �
;

b ¼ p2
1

c
k11
k00
� k210

k200

� �
þ 1þ k11

k00

� �
þ p2ð1þ 2cÞ

� �
;

c ¼ �p2
1

c
k11
k00
� k210

k200

� �
þ p2 1þ k11

k00

� �
þ p4c

� �
:

9>>>>>>>>>=
>>>>>>>>>;

ð58Þ

As with the Timoshenko beam theory, the coefficients of the differential equation, a, b, and c, are
common in this case regardless of the unknown deformation functions. This means that fundamental so-

lutions for differential equations are common.

4. General solution of the governing equation

4.1. General solution of deformation

The characteristic equation of differential equation (57) is a sixth-order equation.

k6 þ ak4 þ bk2 þ c ¼ 0: ð59Þ

Or, if we let

k2 
 K; ð60Þ

the characteristic equation becomes a cubic equation, as shown below.

K3 þ aK2 þ bKþ c ¼ 0: ð61Þ
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We solve this by Cardan�s method (Bronshtein and Semendyayev, 1964). First, letting

K ¼ K	 � a
3
: ð62Þ

Eq. (61) is converted into a form with missing squared terms.

K	3 þ 3p	K	 þ q	 ¼ 0; ð63Þ

where,

p	 ¼ 1
3

b� a2

3

� �
;

q	 ¼ c� 1
3
abþ 2

27
a3:

9>>=
>>; ð64Þ

In order to express the new coefficients, p	 and q	, with shear correction factors, we substitute formula (58)
into the right side of the above formula.

p	 ¼ � 1

9c2
k11
k00

�
� k210

k200

�2
þ p2

3
1

��
þ k11

k00

�
� 1
3c
ð1þ 2cÞ k11

k00

�
� k210

k200

��
� p4

9
ð�1þ cÞ2; ð65Þ

q	 ¼ � 2

27c3
k11
k00

�
� k210

k200

�3
þ p2

3

1

c

�"
� 2þ k11

k00

�
k11
k00

�
� k210

k200

�
� 1

3c2
ð1þ 2cÞ k11

k00

�
� k210

k200

�2#

þ p4
1

3
ð

�
� 1þ cÞ 1

�
þ k11

k00

�
� 1

9c
ð � 1þ cÞð1þ 2cÞ k11

k00

�
� k210

k200

��
� p6

2

27
ð

�
� 1þ cÞ3

�
: ð66Þ

Then, three roots of the cubic equation (63), which are the missing squared terms, are given as

K	 ¼ �A� B; �Ax� Bx2; �Ax2 � Bx; ð67Þ
where

A ¼ 1

2
q	 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q	2 þ 4p	3

p� �� �1=3
;

B ¼ 1

2
q	 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q	2 þ 4p	3

p� �� �1=3
;

AB ¼ �p	;

9>>>>>=
>>>>>;

ð68Þ

and x is one of the imaginary roots in equation x3 ¼ 1; namely,

x ¼ 1
2
ð�1þ i

ffiffiffi
3
p
Þ or 1

2
ð�1� i

ffiffiffi
3
p
Þ: ð69Þ

The square of either value of x will be another value of x. According to formula (62), the three roots of
K of the first cubic equation are given as

K ¼ �A� B� a
3
; �Ax� Bx2 � a

3
; �Ax2 � Bx� a

3
: ð70Þ

From the sign of the value q	2 þ 4p	3 in the square root of the above Eq. (68), the real root or the
complex root can be determined. Therefore, by providing symbol D as a discriminant, we express

D 
 q	2 þ 4p	3 ¼ � d 0

27
p2ðp6 þ a0p4 þ b0p2 þ c0Þ ¼ � d 0

27
p2ðp2 � p21Þðp2 � p22Þðp2 � p23Þ; ð71Þ

where the coefficients in the second equation of (71) are given as
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a0 ¼ � 1
d 0

4 1þ k11
k00

� �3
� 2

c
� 4þ 10cþ ð5þ cÞ k11

k00

� �
1þ k11

k00

� �
k11
k00
� k210

k200

� �2
4

þ 2
c2

1� cþ 6c2 þ ð4þ 2cÞ k11
k00

� �
k11
k00
� k210

k200

� �2
� 2

c3
ð1þ cÞ k11

k00
� k210

k200

 !335;
b0 ¼ 1

d 0
1

c2
� 8þ 20 k11

k00
þ k211

k200

� �
k11
k00
� k210

k200

� �2
� 2

c3
4þ 6cþ k11

k00

� �
k11
k00
� k210

k200

� �3
þ 1

c4
k11
k00
� k210

k200

 !42
4

3
5;

c0 ¼ � 1
d 0

4

c4
k11
k00
� k210

k200

 !42
4

3
5;

d 0 ¼ ð�1þ cÞ2 1þ k11
k00

� �2
� 2

c
� 1þ 2cþ k11

k00

� �
k11
k00
� k210

k200

� �
þ 1

c2
k11
k00
� k210

k200

0
@

1
A
2

2
64

3
75:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð72Þ
Judging from the form of the discriminant D given in Eq. (71), the value of p at which D becomes zero can
be found by solving the sixth-order equation with an even degree other than the double root of p ¼ 0.
Therefore, we can apply Cardan�s method in unmodified form.
The square root of the characteristic equation (59) is given in Eq. (70). If we express these as follows:

k21 ¼ �Ax� Bx2 � a
3
;

k22 ¼ �Ax2 � Bx� a
3
;

k23 ¼ �A� B� a
3
;

9>>=
>>; ð73Þ

we can then express the general solution by the linear combination of the fundamental solutions. For example,

Hy0ðp; x1Þ ¼
X3
j¼1
ðCj e

�kjx1 þ Cjþ3 e
kjx1Þ: ð74Þ

Substituting this into formulae (56), (55), and (53), we can express the other state quantities W ðp; x1Þ,
Hy1ðp; x1Þ, Qz0ðp; x1Þ,My0ðp; x1Þ, andMy1ðp; x1Þ with the linear combinations with constants C1–C6 and the
fundamental solutions.

W ðp; x1Þ ¼
X3
j¼1

kj 1

 
�

k2j
p2

!
ð�Cj e

�kjx1 þ Cjþ3 e
kjx1Þ; ð75Þ

Hy1ðp; x1Þ ¼ �
k00
k10

X3
j¼1

1

 
þ cp2 � k2j ð1þ cÞ þ

k4j
p2

!
ðCj e

�kjx1 þ Cjþ3 e
kjx1Þ; ð76Þ

Qz0ðp; x1Þ ¼
X3
j¼1
ðp2 � k2j ÞðCj e

�kjx1 þ Cjþ3 e
kjx1Þ; ð77Þ

My0ðp; x1Þ ¼
X3
j¼1

kjðCj e
�kjx1 � Cjþ3 e

kjx1Þ; ð78Þ

My1ðp; x1Þ ¼
k00
k10

X3
j¼1

kj 1

 
þ cp2 � k2j ð1þ cÞ þ

k4j
p2

!
ð�Cj e

�kjx1 þ Cjþ3 e
kjx1Þ: ð79Þ
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4.2. Transfer matrix for a finite beam

By replacing the integral constant of the general solutions (74) and (75)–(79) with the state quantities at

the starting edge of the beam, which has the dimensionless field length L1, we can obtain the relation to the
state quantities of the ending edge. The exponential functions are changed to hyperbolic functions. If we

express the state quantities at the starting edge with subscript (0), the transfer function for the relation

between the state quantities at the starting edge and those at beam position x1 ¼ x1 can be expressed as
follows.

W ðp; x1Þ
Hy0ðp; x1Þ
Hy1ðp; x1Þ
My1ðp; x1Þ
My0ðp; x1Þ
Qz0ðp; x1Þ

2
666666664

3
777777775
¼

t11 t12 t13 t14 t15 t16
t21 t22 t23 t24 t25 t26
t31 t32 t33 t34 t35 t36
t41 t42 t43 t44 t45 t46
t51 t52 t53 t54 t55 t56
t61 t62 t63 t64 t65 t66

2
666666664

3
777777775

W ð0Þ

Hð0Þy0

Hð0Þy1

M
ð0Þ
y1

M
ð0Þ
y0

Q
ð0Þ
z0

2
66666666664

3
77777777775
: ð80Þ

4.3. Transfer matrix for a semi-infinite beam

Here, we will give the transfer relation of a semi-infinite beam. First, we take the starting point of a beam

on the origin of the position coordinate. Here, we consider that the beam extends infinitely toward the

positive x direction. At the beam point of infinity, all the state quantities become zero. Thus, all exponential
functions with positive exponents must be omitted. As a result, the terms of integral constants C4–C6 in the
fundamental solutions become zero. By replacing the remaining integral constants C1–C3 with known state
quantities of the beam starting edge, we can obtain the transfer relation for the semi-infinite beam.
If the starting point is the hinged support (Fig. 2(a)), the deflection and warping moments will be

specified. Thus, if we denote these as W ð0Þ, M
ð0Þ
y0 , and M

ð0Þ
y1 , respectively, the transfer relation will be

W ðp; x1Þ
Hy0ðp; x1Þ
Hy1ðp; x1Þ
My1ðp; x1Þ
My0ðp; x1Þ
Qz0ðp; x1Þ

2
6666664

3
7777775
¼

t11 t14 t15
t21 t24 t25
t31 t34 t35
t41 t44 t45
t51 t54 t55
t61 t64 t65

2
6666664

3
7777775

W ð0Þ

M
ð0Þ
y1

M
ð0Þ
y0

2
64

3
75: ð81Þ

If the starting point is the slider (Fig. 2(b)), two types of sectional rotation, and shearing force are

specified. Thus, if we denote these as Hð0Þy0 , H
ð0Þ
y1 , and Q

ð0Þ
z0 , respectively, the transfer relation will be

Fig. 2. Boundary conditions of starting edge for the semi-infinite beam.
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W ðp; x1Þ
Hy0ðp; x1Þ
Hy1ðp; x1Þ
My1ðp; x1Þ
My0ðp; x1Þ
Qz0ðp; x1Þ

2
6666664

3
7777775
¼

t12 t13 t16
t22 t23 t26
t32 t33 t36
t42 t43 t46
t52 t53 t56
t62 t63 t66

2
6666664

3
7777775

Hð0Þy0

Hð0Þy1

Q
ð0Þ
z0

2
64

3
75: ð82Þ

The elements of the field transfer matrix for a semi-infinite beam are given in Appendix A.

5. Problem setting

In relation to the six types of state functions that exist at the starting edge of a semi-infinite beam, or at

x ¼ 0, we will consider the following six types of actions. Namely, any parameter having a nonzero value
will be applied to only one state quantity, and the two remaining specified state quantities must be zero.

• Problem 1: Constant deflection velocity _wwð0Þ1 ; however, the two types of warping moments must be zero
ðM ð0Þ

y1 ¼ M
ð0Þ
y0 ¼ 0Þ.

• Problem 2: Constant sectional rotation velocity at the zeroth step _hhð0Þy0 ; however, the sectional rotation

velocity at the first step and the shearing load must be zero ð _hhð0Þy1 ¼ Q
ð0Þ
z0 ¼ 0Þ.

• Problem 3: Constant sectional rotation velocity at the first step _hhð0Þy1 ; however, the sectional rotation

velocity at the zeroth step and the shearing load must be zero ð _hhð0Þy0 ¼ Q
ð0Þ
z0 ¼ 0Þ.

• Problem 4: Constant dimensionless warping moment at the first step M
ð0Þ
y1 ; however, the deflection velo-

city and usual bending moment must be zero ð _wwð0Þ1 ¼ M
ð0Þ
y0 ¼ 0Þ.

• Problem 5: Constant dimensionless bending moment M
ð0Þ
y0 ; however, the deflection velocity and warping

moment at the first step must be zero ð _wwð0Þ1 ¼ M
ð0Þ
y1 ¼ 0Þ.

• Problem 6: Constant dimensionless shearing load Q
ð0Þ
z0 ; however, the two types of sectional rotation

velocity must be zero ð _hhð0Þy0 ¼ _hhð0Þy1 ¼ 0Þ.

In the problems above, the sign _ðÞðÞ indicates differentiation with respect to dimensionless time t1. The
action forces of the starting edge, M

ð0Þ
y0 , M

ð0Þ
y1 , and Q

ð0Þ
z0 , conform to the nondimensional definition, Eq. (49).

Problems 1, 4, and 5 are conditions for the hinged support (Fig. 2(a)). Problems 2, 3, and 6 are conditions

for the slider support (Fig. 2(b)). When these boundary conditions are converted, based on the definition of

Laplace transform formula (51), the following are provided.

Problem 1: W ð0Þ ¼ _wwð0Þ1 =p2; M
ð0Þ
y0 ¼ 0; M

ð0Þ
y1 ¼ 0;

Problem 2: Hð0Þy0 ¼ _hhð0Þy0 =p
2; Hð0Þy1 ¼ 0; Q

ð0Þ
z0 ¼ 0;

Problem 3: Hð0Þy0 ¼ 0; Hð0Þy1 ¼ _hhð0Þy1 =p
2; Q

ð0Þ
z0 ¼ 0;

Problem 4: W ð0Þ ¼ 0; M
ð0Þ
y1 ¼ My1=p; M

ð0Þ
y0 ¼ 0;

Problem 5: W ð0Þ ¼ 0; M
ð0Þ
y1 ¼ 0; M

ð0Þ
y0 ¼ M

ð0Þ
y0 =p;

Problem 6: Hð0Þy0 ¼ 0; Hð0Þy1 ¼ 0; Q
ð0Þ
z0 ¼ Q

ð0Þ
z0 =p:

These values are to be substituted into the specified state quantity vector for the beam starting edge on the
right hand-sides of formulae (81) and (82).
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6. Laplace inverse transform

6.1. Integral expression for the inverse transform

After the specified boundary values are defined and the inverse transform is taken, the solution of all

state quantities in the time domain can be obtained. Typically, the function for which the specified

boundary values are given can be represented as

F ðp; x1Þ ¼
X3
j¼1

FjðpÞe�kjx1 : ð83Þ

FjðpÞ on the right-hand side will be the function for which the specified transformed value of the starting
edge is multiplied by each element of the transfer matrix tij. In other words, it is the function for which the
element tij is multiplied by zero, or 1=p or 1=p2, depending on the specified values of the ‘‘Problem.’’
Taking the limit as jpj ! 1 for function FjðpÞ, we obtain
lim
jpj!1

FjðpÞ ¼ 0 ðj ¼ 1; 2; 3Þ: ð84Þ

Additionally, in some cases the denominator or numerator of the function FjðpÞ is or is not multiplied by
kj, and this is clear from the form of the function of the transfer matrix element.

When we calculate the limit of jpj ! 1 of the three types of roots k1, k2, and k3 obtained from the

characteristic equation (59), the results are as follows:

lim
jpj!1

k1
pc1=2

¼ 1;

lim
jpj!1

k2
p
¼ 1;

lim
jpj!1

k3
p
¼ 1:

9>>>>>>=
>>>>>>;

ð85Þ

Also, we can easily prove that k1 and k2 will each have a factor of p1=2. The formula is shown below.

lim
jpj!0

k1
p1=2
¼ �ð�iÞ1=2 ¼ � 1ffiffiffi

2
p ð1� iÞ;

lim
jpj!0

k2
p1=2
¼ �ðþiÞ1=2 ¼ � 1ffiffiffi

2
p ð1þ iÞ;

lim
jpj!0

k3 ¼ �
1

c1=2
k11
k00
� k210

k200

� �1=2
:

9>>>>>>>=
>>>>>>>;

ð86Þ

Fig. 3 shows variations in these three types of roots on the real axis and on the imaginary axis.

The Laplace inverse transform assumes the following form.

f ðt1; x1Þ ¼
1

2pi

Z cþi1

c�i1
F ðp; x1Þept1 dp: ð87Þ

Namely, according to formula (83), the following equation is obtained.

f ðt1; x1Þ ¼
X3
j¼1

1

2pi

Z cþi1

c�i1
FjðpÞeðpt1�kjx1Þdp; ð88Þ

where �i� is an imaginary unit; i.e., i ¼
ffiffiffiffiffiffiffi
�1
p

. In addition, the constant c is a value set such that all singular
points of function F ðp; x1Þ on the complex plane p are on the left side of the line p ¼ c, which is parallel to
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the imaginary axis. The segment in the positive direction (upward) of p ¼ c, which is parallel to this
imaginary axis, is what we would like to call the Integral path Br1 after the Bromwich integral.

If we take Laplace inverse transform while keeping all the state quantities in vector form, we obtain the
following equation:

_ww1ðt1; x1Þ
_hhy0ðt1; x1Þ
_hhy1ðt1; x1Þ

My1ðt1; x1Þ
My0ðt1; x1Þ
Qz0ðt1; x1Þ

2
6666664

3
7777775
¼ 1

2pi

Z cþi1

c�i1

�tt11 �tt12 �tt13 �tt14 �tt15 �tt16
�tt21 �tt22 �tt23 �tt24 �tt25 �tt26
�tt31 �tt32 �tt33 �tt34 �tt35 �tt36
�tt41 �tt42 �tt43 �tt44 �tt45 �tt46
�tt51 �tt52 �tt53 �tt54 �tt55 �tt56
�tt61 �tt62 �tt63 �tt64 �tt65 �tt66

2
6666664

3
7777775
ept1 dp �

_wwð0Þ1
_hhð0Þy0

_hhð0Þy1

M
ð0Þ
y1

M
ð0Þ
y0

Q
ð0Þ
z0

2
66666666664

3
77777777775
: ð89Þ

The elements of transfer matrix tij in the rows of deformations w1ðt1; x1Þ, hy0ðt1; x1Þ, and hy1ðt1; x1Þ are
differentiated by dimensionless time t1 and then multiplied by p. In addition, because of the coefficient of the
state quantity of the deformations for the starting edge, the elements will be multiplied by 1=p2. Because of
the coefficient of the state quantity of the stress resultants, the elements will also be multiplied by 1=p. The
elements of transfer matrix tij in the rows of stress resultants My1ðt1; x1Þ, My0ðt1; x1Þ, and Qz0ðt1; x1Þ are
multiplied only by 1=p2, corresponding to the coefficient of the state quantity of the deformations for the
starting edge, and by 1=p, corresponding to the coefficient of the stress resultants. This is expressed sym-
bolically in Table 1.

Fig. 3. Changes in the characteristic roots on the real axis and the imaginary axis.

Table 1

Multipliers of transfer elements

1
p2�: 1

p�:
+ +

Time integrated: p�: ) 1
p � tvv 1� tvf

1
p2 � tfv

1
p � tff
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From this operation, we can understand that the symmetry of transfer matrix element tij with respect
to the subsidiary diagonal line is retained. The newly-obtained transfer matrix element �ttij is shown in
Appendix B.

6.2. Branch points and poles

The factors that constitute the elements of the transfer matrix for the finite beam and the semi-infinite

beam are as follows.

kj; p; p2

k2j � k2jþ1
k2j � p2

k2jþ1 þ k2jþ2 � ð1þ cÞp2

p2 þ ðk2j � p2Þðk2j � cp2Þ
�p2 þ ðk2jþ1 � p2Þðk2jþ2 � p2Þ

Branch points exist at positions where the cubic root kj becomes zero or where the discriminant D, which
exists in the square root that is a factor of the cubic root, becomes zero. The proposed solution for the
former is the value p, which satisfies the equation below, according to the sixth-degree algebraic equation
(59).

c ¼ 0: ð90Þ
Setting the right-hand side of formula (58c) to zero, we can then solve the following.

p2
1

c
k11
k00

��
� k210

k200

�
þ p2 1

�
þ k11

k00

�
þ p4c

�
¼ 0: ð91Þ

According to the solution obtained by use of the quadratic formula, we can obtain five kinds of roots.

p ¼ 0 ðDouble rootÞ;

p ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2c
1þ k11

k00

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k11

k00

� �2
þ 4 k

2
10

k200

s2
4

3
5

vuuut :

9>>>>=
>>>>;

ð92Þ

Four roots, or all roots except the double root p ¼ 0, become purely imaginary numbers, and they are
distributed symmetrically on the imaginary axis with respect to the origin.

With reference to Fig. 3, the following conclusions are obtained.

• At p ¼ 0, characteristic roots k1 and k2 become zero. Characteristic root k1 does not have a branch point
on the imaginary axis.

• Characteristic root k2 has branch points �i pi2, which are symmetrical with respect to the origin on the

imaginary axis, where,

pi2 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2c
1þ k11

k00

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k11

k00

� �2
þ 4 k

2
10

k200

s2
4

3
5

vuuut :

• Characteristic root k3 has branch points �i pi3, which are symmetrical with respect to the origin on the

imaginary axis, where,
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pi3 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2c
1þ k11

k00

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k11

k00

� �2
þ 4 k

2
10

k200

s2
4

3
5

vuuut :

Next, we will solve for the value p, for which the discriminant D becomes zero. The equation for which
the discriminant (71) is set to zero is as follows.

d 0p2ðp6 þ a0p4 þ b0p2 þ c0Þ ¼ 0: ð93Þ
Therefore, by substituting zero for each factor, we obtain

p2 ¼ 0;
p6 þ a0p4 þ b0p2 þ c0 ¼ 0:

�
ð94Þ

As mentioned previously, Cardan�s formula can be applied to the root of this sixth-degree algebraic
equation (94b). The result is as follows

p2 ¼ �A0 � B0 � a0

3
; �A0x� B0x2 � a0

3
; �A0x2 � B0x� a0

3
; ð95Þ

where

A0 ¼ 1
2
ðq	0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q	02 þ 4p	03

p
Þ

� �1=3
;

B0 ¼ 1
2
ðq	0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q	02 þ 4p	03

p
Þ

� �1=3
;

A0B0 ¼ �p	
0
:

9>>>>>>=
>>>>>>;

ð96Þ

p	
0
and q	

0
can be calculated from

p	
0 ¼ 1

3
b0 � a02

3

� �
;

q	
0 ¼ c0 � 1

3
a0b0 þ 2

27
a03:

9>>=
>>; ð97Þ

If Eq. (95); i.e. the square of the root of an equation for which the discriminant is set to zero, is expressed

in descending order, as shown below,

p2 ¼ 02; p21; p22; p23:

Therefore, all three roots are real numbers, since the discriminant in Eq. (96),

D0 
 q	
02 þ 4p	03; ð98Þ

becomes negative. This is known as the ‘‘casus irreducibilis’’. Furthermore, from the relation between the

roots and the coefficients in formula (71), i.e.,

a0 ¼ �ðp21 þ p22 þ p23Þ6 0; b0 ¼ p21p
2
2 þ p22p

2
3 þ p23p

2
1 P 0; c0 ¼ �p21p

2
2p
2
3 6 0;

we can prove that all three roots in the cubic equation become positive real numbers (Fig. 4). As a result, all

the roots of the eight-degree algebraic equation (93) become

p ¼ 0 ðdouble rootÞ; �p1; �p2; �p3:
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Thus, the roots are distributed symmetrically on the real axis with respect to the origin.

The proposed solution for the pole is considered to be the p-value that satisfies the following equations,
because of the form of the factors which constitute the denominator of the fraction for the transfer matrix

element.

kj ¼ 0 ðj ¼ 1–3Þ;
k2j � k2jþ1 ¼ 0 ðj ¼ 1–3Þ;
pa ¼ 0 ða ¼ 1=2; 1; 3=2; . . .Þ:

9=
; ð99Þ

The first equation, (99a), specifies the position where kj becomes zero. Thus, it corresponds to the position

of the branch point, as calculated earlier; namely, the point which satisfies this first condition is the branch

point on the imaginary axis and is also the pole of order 1/2. In order to determine the value p which
satisfies the second equation (99b), we substituted Eq. (73) into this. In the end, the result is identical with

the position at which the discriminant D becomes zero, as calculated previously. Namely, the point which
satisfies this second condition is the branch point on the real axis and is also the pole of order 1/2. The value

p that satisfies the third equation (99c) is the origin on the complex plane p and also the branch point, and
can be said to be the pole of order a.
In summary, the branch points and poles for function FjðpÞ match the zero points of the characteristic

root kj and the zero points of its discriminant D. Therefore, the integration of function FjðpÞ will be satis-
factory if we concentrate on only the branch points of characteristic root kj.

6.3. Branch cut

As indicated in Fig. 5, we let the branch cut go towards the origin from the left side on the negative real

axis. If a branch point exists on the imaginary axis, we draw the line such that it goes around the branch

point from the origin. These paths between adjacent branch points can be identified as follows. Let the
positive direction of the real axis correspond to the sequence L0, L1, L2, L3, L4, L5, L6, and let the negative

Fig. 4. Positive and negative of D0, a0, b0 and c0.
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direction to which the line returns around the branch point þp3 on the right edge of real axis correspond to
the sequence l6, l5, l4, l3, l2, l1, l0. The imaginary axis downward from the origin will be Li1. The section in

which the line extends toward the origin after going around the branch point of the negative imaginary

numbers will be Li2. Upward from the origin will be li2, and the section in which the line extends toward the
origin after going around the branch points of positive imaginary numbers will be denoted as li1.
Because we introduced the branch cut on the real axis, the value of

ffiffiffiffi
D
p

has to be bifurcated into positive

and negative from the branch point at which the discriminant D becomes zero. Because of this, the symbols
A and B in Cardan�s formula (68) have to be mutually exchanged. In the end, two conjugate complex
solutions are interchangeable and located above and below the branch cut; thereby, the real root remains a

real root.

When we introduce a branch cut on the imaginary axis, the characteristic root, k2, for instance, will be
divided into positive and negative values from branch point �ipi2, at which k2 becomes zero. Thus, we
introduce the following.

k2ðpÞ ¼ l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp � ipi2Þðp þ ipi2Þ

p
:

The length from the origin to p is denoted as q. Then, we calculate the above equation. Considering the
change in the phase angle, the results are as follows:

Section Li1 : l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qe�

p
2
i � ipi2ð Þ qe�

p
2
i þ ipi2ð Þ

q
¼ l2ðp2i2 � q2Þ1=2 e�pi ¼ �k2

Section Li2 : l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qe�

p
2
i � ipi2ð Þ qe�

p
2
i þ ipi2ð Þ

q
¼ l2ðp2i2 � q2Þ1=2 ¼ k2

Section li2 : l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qe

p
2
i � ipi2ð Þ qe

p
2
i þ ipi2ð Þ

q
¼ l2ðp2i2 � q2Þ1=2 ¼ k2

Section li1 : l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qe

p
2
i � ipi2ð Þ qe

p
2
i þ ipi2ð Þ

q
¼ l2ðp2i2 � q2Þ1=2 epi ¼ �k2

Fig. 5. Branch cut.
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With the characteristic root k3, similar sign-switching occurs at each path-section.
The change in the characteristic root on the real axis can also be determined in the same manner, by

changing the discriminant D into the factorization below with positive real number d 0.

D 
 � d 0

27
p2ðp2 � p21Þðp2 � p22Þðp2 � p23Þ:

In Fig. 6, we show the changes in these three kinds of characteristic roots along the cutting line on the

real axis. Fig. 7 shows changes in the characteristic roots along the cutting line on the imaginary axis.

Table 2 provides the changes in the characteristic line for each section.

6.4. Paths of integration

Based on our previous discussion on branch points and poles, here we would like to choose the four

kinds of paths of integration shown in Fig. 8, in order to obtain the Laplace inverse transform of the
obtained function F ðp; x1Þ.
Table 3 shows the integral paths classified by differences in branch points of the integrands and diffe-

rences in the sign of the exponent in the exponential functions.

Fig. 8(a) shows a case where an integral path Br2 of a circular arc shape can be taken at the right side of

p ¼ c where no branch points and poles exist. When Eq. (88) and the Cauchy integral are taken into
consideration, the following equations hold.

I1 ¼ lim
jpj!1

Z
Br2

F1ðpÞep t1�
k1
p x1

� �
dp

¼ lim
jpj!1

Z
Br2

F1ðpÞep t1�c1=2x1ð Þ dp;

I2 ¼ lim
jpj!1

Z
Br2

F2ðpÞep t1�
k2
p x1

� �
dp

¼ lim
jpj!1

Z
Br2

F2ðpÞepðt1�x1Þ dp;

I3 ¼ lim
jpj!1

Z
Br2

F3ðpÞep t1�
k3
p x1

� �
dp

¼ lim
jpj!1

Z
Br2

F3ðpÞepðt1�x1Þ dp:

According to Eq. (84) and Jordan�s lemma, the following equations hold.

I1 ¼ 0 ðt1 < c1=2x1Þ; I2 ¼ 0 ðt1 < x1Þ; I3 ¼ 0 ðt1 < x1Þ: ð100Þ

By substituting the nondimensional variables (47) into the above equation, we can rewrite it as a usual

expression in terms of time t and space x, as follows:

I1 ¼ 0 ðc2t < xÞ;
I2 ¼ 0 ðc1t < xÞ;
I3 ¼ 0 ðc1t < xÞ:

9=
; ð101Þ

Namely, among three kinds of waves caused by impacts, the integral term of function F1ðpÞ propagates
at the velocity of transversal wave c2 and the integral terms of functions F2ðpÞ and F3ðpÞ propagate at the
velocity of longitudinal wave c1.
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In order to integrate the function F1ðpÞ over the range c1=2x1 < t1, the integral section must bypass to the
left side section of segment Br1, where the exponent of the exponential function becomes negative. In that

section, branch points exist only on the real axis; thus, we can take the integral path as shown in Fig. 8(b).

Fig. 6. Changes in the characteristic roots on the real axis.
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Likewise, in order to integrate the function F2ðpÞ over the range x1 < t1, we can take the integral path shown
in Fig. 8(c); concerning the integral of function F3ðpÞ, we can take the integral path shown in Fig. 8(d).

Fig. 7. Changes in the characteristic roots on the imaginary axis.

Table 2

Changes in characteristic roots

Section ~LL0 ~LL1 ~LL2 ~LL3 ~LL4 ~LL5 ~LL6

p �q �q �q �q q q q
(k1) �k1 �k3 �k1 �k2 k1 k1 k1
(k2) �k2 �k2 �k2 �k1 k2 k2 k2
(k3) �k3 �k1 �k3 �k3 k3 k3 k3

Section l
 
0 l

 
1 l

 
2 l

 
3 l

 
4 l

 
5 l

 
6

p �q �q �q �q q q q
(k1) �k1 �k1 �k1 �k1 k2 k1 k3
(k2) �k2 �k2 �k2 �k2 k1 k2 k2
(k3) �k3 �k3 �k3 �k3 k3 k3 k1

Section #Li1 "Li2 "li2 #li1
p �iq �iq iq iq
(k2) �k2 k2 k2 �k2
(k3) �k3 k3 k3 �k3
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In Table 2, which summarizes the changes of a characteristic root, when characteristic roots of the same
sign appear above and below (or to the left and right sides of) the branch cut, they cancel each other and do

not contribute to the integral value. Therefore, the sections where contribution to the integrated value takes

place for each integrand are as listed below.

F1ðpÞ : L1 þ L3 þ L4 þ L6 þ l6 þ l4 þ l3 þ l1
F2ðpÞ : L3 þ L4 þ l4 þ l3
F3ðpÞ : L1 þ L6 þ l6 þ l1

Fig. 8. Four kinds of integral paths.

Table 3

Integral paths

Integration t1 < x1 x1 < t1 < c1=2x1 c1=2x1 < t1R
Br2

F1ðpÞept1�k1x1 dp Fig. 8(a) Fig. 8(a) Fig. 8(b)R
Br2

F2ðpÞept1�k2x1 dp Fig. 8(a) Fig. 8(c) Fig. 8(c)R
Br2

F3ðpÞept1�k3x1 dp Fig. 8(a) Fig. 8(d) Fig. 8(d)
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Furthermore, the number of appearances of �kj ðj ¼ 1–3Þ for each section on the real axis is always
once above and once below the branch cut (Table 2); thus, all integral values in this section cancel each

other out and in the end their total becomes zero.

In Table 2, the sign always reverses when the branch cut on the imaginary axis is crossed from left to
right or vice versa. Thus, contribution to the integral value takes place in all sections of the branch cut on

the imaginary axis.

6.5. Path integral

At first glance, integrand FjðpÞ ðj ¼ 1–3Þ seems complicated; however, as shown in Table 2, the terms in
k2j ðj ¼ 1–3Þ transmute while cycling through the roles; thus, the integrand FjðpÞ ðj ¼ 1–3Þ itself transmutes
while circulating. However, when factors kj and p exist in the integrand as the first order, the sign change in
this factor directly affects the change in the sign of the integrand. We would like to explain this mechanism

by reference to the following examples.

For instance, let us consider a case in which the factors kj and p do not exist as terms of the first order.
The term of j ¼ 2 in the transfer matrix element �tt51 of the infinite beam will be as follows:

F2ðpÞe�k2x1 
 k23 þ k21 � ð1þ cÞp2

ðk21 � k22Þðk
2
2 � k23Þ

e�k2x1 :

Therefore, neither factor kj ðj ¼ 1; 2; 3Þ nor p exists as a first order term. The inverse transform on the
real axis can be calculated asZ

L3þL4þl4þl3

F2ðpÞe�k2x1þpt1 dp ¼
Z 0

p1

F1 ek1x1�qt1 dð�qÞ þ
Z p1

0

F2 e�k2x1þqt1 dqþ
Z 0

p1

F1 e�k1x1þqt1 dq

þ
Z p1

0

F2 ek2x1�qt1 dð�qÞ

¼ 2
Z p1

0

F1 sinhðk1x1f � qt1Þ � F2 sinhðk2x1 � qt1Þgdq:

The inverse transform of the same element on the imaginary axis can be calculated asZ
Li1þLi2þli2þli1

F2ðpÞe�k2x1þpt1 dp ¼
Z pi2

0

F2 ek2x1�iqt1 dð�iqÞ þ
Z 0

pi2

F2 e�k2x1�iqt1 dð�iqÞ

þ
Z pim

0

F2 e�k2x1þiqt1dðiqÞ þ
Z 0

pi2

F2 ek2x1þiqt1 dðiqÞ

¼ �
Z pi2

0

iF2ðpÞ ðek2x1
�

� e�k2x1Þðeiqt1 þ e�iqt1Þ
�
dq

¼ �4i
Z pi2

0

F2ðpÞ sinh k2x1 cos qt1 dq:

Likewise, the inverse transform of F3ðpÞ can be obtained from the term j ¼ 3 in the transfer matrix
element �tt51.
Next, let us consider the case in which the factor kj exists as a first order term and p does not exist as a

first order term. The j ¼ 2 term in the transfer matrix element �tt61 of the infinite beam will be

F2ðpÞe�k2x1 
 �ðk
2
2 � p2Þ½k23 þ k21 � ð1þ cÞp2�

k2ðk21 � k22Þðk
2
2 � k23Þ

e�k2x1 :
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Thus, only factor k2 exists as a first order term. Its inverse transform on the real axis can be calculated
as Z

L3þL4þl4þl3

F2ðpÞe�k2x1þpt1 dp ¼
Z 0

p1

�F1 ek1x1�qt1 dð�qÞ þ
Z p1

0

F2 e�k2x1þqt1 dqþ
Z 0

p1

F1 e�k1x1þqt1 dq

þ
Z p1

0

�F2 ek2x1�qt1 dð�qÞ

¼ �2
Z p1

0

F1 coshðk1x1f � qt1Þ � F2 coshðk2x1 � qt1Þgdq:

The inverse transform of the same element on the imaginary axis can be calculated asZ
Li1þLi2þli2þli1

F2ðpÞe�k2x1þpt1 dp ¼
Z pi2

0

�F2 ek2x1�iqt1 dð�iqÞ þ
Z 0

pi2

F2 e�k2x1�iqt1 dð�iqÞ

þ
Z pi2

0

F2 e�k2x1þiqt1 dðiqÞ þ
Z 0

pi2

�F2 ek2x1þiqt1 dðiqÞ

¼
Z pi2

0

iF2ðpÞðek2x1 þ e�k2x1Þðeiqt1 þ e�iqt1Þdq

¼ 4i
Z pi2

0

F2ðpÞ cosh k2x1 cos qt1 dq:

Likewise, the inverse transform of F3ðpÞ can be obtained from the term j ¼ 3 in the transfer matrix
element �tt61.
Now, let us consider the case in which the factor p exists as a first order term and kj does not exist as a

first order term, which is the opposite of the previous case. The term j ¼ 2 in the transfer matrix element �tt11
of the infinite beam will be

F2ðpÞe�k2x1 
 ðk
2
2 � p2Þ½k23 þ k21 � ð1þ cÞp2�

pðk21 � k22Þðk
2
2 � k23Þ

e�k2x1 :

Thus, only factor p exists as a first order term. Its inverse transform on the real axis can be calculated

as

Z
L3þL4þl4þl3

F2ðpÞe�k2x1þpt1 dp ¼
Z 0

p1

�F1 ek1x1�qt1 dð�qÞ þ
Z p1

0

F2 e�k2x1þqt1 dqþ
Z 0

p1

F1 e�k1x1þqt1 dq

þ
Z p1

0

�F2 ek2x1�qt1 dð�qÞ

¼ �2
Z p1

0

F1 coshðk1x1f � qt1Þ � F2 coshðk2x1 � qt1Þgdq:
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The inverse transform of the same element on the imaginary axis can be calculated asZ
Li1þLi2þli2þli1

F2ðpÞe�k2x1þpt1 dp ¼
Z pi2

0

�F2 ek2x1�iqt1 dð�iqÞ þ
Z 0

pi2

�F2 e�k2x1�iqt1 dð�iqÞ

þ
Z pi2

0

F2 e�k2x1þiqt1 dðiqÞ þ
Z 0

pi2

F2 ek2x1þiqt1 dðiqÞ

¼ �
Z pi2

0

iF2ðpÞðek2x1 � e�k2x1Þðeiqt1 � e�iqt1Þdq

¼ 4
Z pi2

0

F2ðpÞ sinh k2x1 sin qt1 dq:

Likewise, the inverse transform of F3ðpÞ can be obtained from the term j ¼ 3 in the transfer matrix
element �tt11.

6.6. Integral around a pole

According to the impact problem involving the beam model, as previously stated, the poles on the

complex plane overlap the branch points. Among these, other than the origin, the branch-pole points will

be of the order 1/2. Thus, even if these are integrated, they will not have nonzero values, as shown below. In

contrast, the branch-pole point on the origin will have nonzero values, depending on the order.

As an example of a pole of order 1/2, we will take the case of j ¼ 1 in the transfer matrix element �tt21.

F1ðpÞe�k1x1 
 p½k22 þ k23 � ð1þ cÞp2�
k1ðk23 � k21Þðk

2
1 � k22Þ

e�k1x1 :

A factor of the numerator p and an inside factor p in the factor ðk21 � k22Þ of the denominator cancel each
other out. Because of the existence of k1 in the denominator which has p1=2 as a factor, the function retains a
pole of order 1/2. We transform this function into a contour integral for infinitesimal radius r, which en-
closes the origin of polar coordinate p ¼ reih, and we then take the limit as r! 0. The constant coefficient

can be calculated from Eq. (86) and is thus omitted. Taking out the pole of order 1/2 only, we calculate

lim
jpj!0

I
r

1

p1=2
dp ¼ lim

r!0

Z p

�p

ireih

ðreihÞ1=2
dh ¼ lim

r!0

Z p

�p
ir1=2eih=2 dh ¼ 0:

This shows that the integral value around the origin will be zero.

As an example in which the pole of order 1 is not affected by the branch, we will consider a case where

j ¼ 1 in the transfer matrix element �tt11.

F1ðpÞe�k1x1 
 ðk
2
1 � p2Þ½k22 þ k23 � ð1þ cÞp2�

pðk23 � k22Þðk
2
1 � k22Þ

e�k1x1 :

An inside factor p in the numerator ðk21 � p2Þ and an inside factor p in the denominator ðk21 � k22Þ cancel
each other out. In the end, this function has a pole of order 1 because of the factor p at the left end of
denominator. When we take the inverse transform, the circle line integral around the origin with infini-

tesimal radius r must be executed. From the calculus of residues

1

2pi

I
r
F1ðpÞe�k1x1þpt1 dp ¼ Res ½F1ðpÞe�k1x1þpt1 ; 0� ¼ lim

jpj!0
ðp � 0ÞF1ðpÞe�k1x1þpt1 ¼ lim

jpj!0

k21
k21 � k22

¼ 1
2

with the relation from Eq. (86)
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lim
jpj!0

k22
k21
¼ �1:

Although, as shown in Table 4, the characteristic roots k1 and k2 change their roles around the origin
(Fig. 9) for each quadrant, this relation holds unchangeably and is not affected by the branch.

As an example in which the pole of order 1 is affected by the branch, we will consider a case where j ¼ 1
in the transfer matrix element �tt51 concerning bending moment.

F1ðpÞe�k1x1 
 ½k
2
2 þ k23 � ð1þ cÞp2�
ðk23 � k21Þðk

2
1 � k22Þ

e�k1x1 :

Factors in the numerator ½k22 þ k23 � ð1þ cÞp2� and denominator ðk23 � k21Þ include k23. Thus, at the origin
it will become nonzero. However, the factor ðk21 � k22Þ has p as an inside factor; therefore, at p ¼ 0 it has a
pole of order 1. The contour integral above is obtained by calculus of residues as

1

2pi

I
r
F1ðpÞe�k1x1þpt1 dp ¼ Res½F1ðpÞe�k1x1þpt1 ; 0� ¼ lim

jpj!0
ðp � 0ÞF1ðpÞe�k1x1þpt1 ¼ lim

jpj!0

p

k21 � k22
:

Calculating the denominator k21 � k22 from Table 4 and Eq. (86), we obtain

k21 � k22 ¼
þ2ip ðquadrants I; IIIÞ;
�2ip ðquadrants II; IVÞ:

�

Therefore, the residue theorem cannot be applied. In this case, the integrand also changes.

lim
jpj!0

F1ðpÞe�k1x1þpt1 ¼ lim
jpj!0

½k22 þ k23 � ð1þ cÞp2�
ðk23 � k21Þðk

2
1 � k22Þ

e�k1x1þpt1 ¼
þ 1
2i
lim
jpj!0

1
p ðquadrants I; IIIÞ;

� 1
2i
lim
jpj!0

1
p ðquadrants II; IVÞ:

8<
:

Table 4

Changes in the characteristic root around the origin

Quadrant III IV I II

(k1) �k2 k1 k2 �k1
(k2) �k1 k2 k1 �k2

Fig. 9. Integral path around the origin.
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By introducing the polar coordinate p ¼ reih,

lim
jpj!0

1

2pi

I
r
F1ðpÞe�k1x1þpt1 dp ¼ 1

2pi

Z �p
2

�p

1

2ireih
ireih dhþ 1

2pi

Z 0

�p
2

�
� 1

2ireih

�
ireih dh

þ 1

2pi

Z p
2

0

1

2ireih
ireih dhþ 1

2pi

Z p

p
2

�
� 1

2ireih

�
ireih dh

¼ 1
8i
� 1
8i
þ 1
8i
� 1
8i
¼ 0:

We can see that there is no contribution to the integral value.
As an example in which the pole is of the order 3/2, we consider a case where j ¼ 1 in the transfer matrix

element �tt12.

F1ðpÞe�k1x1 
 k1½k22 þ k23 � ð1þ cÞp2�
pðk23 � k21Þðk

2
1 � k22Þ

e�k1x1 :

The numerator expression k1 has the inside factor p1=2, and both the denominator expression ðk21 � k22Þ
and the denominator expression p have p. In the end, this integrand F1ðpÞe�k1x1 will have a pole of order 3/2.
The residue theorem can be used only for a pole of an order expressed by an integer. Thus, we can dif-

ferentiate this integrand until it becomes a function with a pole of the first order and then take back the

integral from its residue. For this function, first order differentiation is sufficient.

1

2pi

I
r
F1ðpÞe�k1x1þpt1 dp ¼

Z x1

0

1

2pi

I
r

o

ox1
F1ðpÞe�k1x1þpt1 dpdx1 ¼

Z x1

0

Res
o

ox1
F1ðpÞe�k1x1þpt1 ; 0

� �
dx1:

Here, from calculus of residues, we obtain

Res
o

ox1
F1ðpÞe�k1x1þpt1 ; 0

� �
¼ lim
jpj!0
ðp � 0Þ o

ox1
F1ðpÞe�k1x1þpt1 ¼ lim

jpj!0
p
�k21½k

2
2 þ k23 � ð1þ cÞp2�

pðk23 � k21Þðk
2
1 � k22Þ

e�k1x1þpt1

¼ lim
jpj!0

k21
k21 � k22

¼ 1
2
:

Thus, in the end, we obtain

1

2pi

I
r
F1ðpÞe�k1x1þpt1 dp ¼

Z x1

0

Res
o

ox1
F1ðpÞe�k1x1þpt1 ; 0

� �
dx1 ¼

Z x1

0

1

2
dx1 ¼

x1
2
:

Functions of orders other than this, regardless of whether they are affected by a branch, can be treated in

the same manner.

6.7. Solutions of problems

The inverse transformation required to obtain the quantities listed was carried out as outlined in the

previous sections; the final expression is
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_ww1ðt1; x1Þ
_hhy0ðt1; x1Þ
_hhy1ðt1; x1Þ

My1ðt1; x1Þ
My0ðt1; x1Þ
Qz0ðt1; x1Þ

2
6666666664

3
7777777775
¼

T11 T12 T13 T14 T15 T16

T21 T22 T23 T24 T25 T26

T31 T32 T33 T34 T35 T36

T41 T42 T43 T44 T45 T46

T51 T52 T53 T54 T55 T56

T61 T62 T63 T64 T65 T66

2
6666666664

3
7777777775

_wwð0Þ1
_hhð0Þy0

_hhð0Þy1

M
ð0Þ
y1

M
ð0Þ
y0

Q
ð0Þ
z0

2
6666666666664

3
7777777777775
: ð102Þ

Elements Tij ði; j ¼ 1; 2; . . . ; 6Þ of the transfer matrix in the three time ranges are given in Table 5.
Again, we can recognize the reciprocal relation through the array symmetry with respect to the sub-

sidiary diagonal line. Symbols for Table 5 are given in Appendix C.

7. Transverse impact behavior for a semi-infinite beam

Six kinds of transverse impact mentioned previously were applied to the origin (x1 ¼ 0) of the x axis of a
semi-infinite elastic beam, which has a rectangular cross-section of width b and height h. Unit warping
functions and unit shearing functions at the zeroth step and the first step are as follows (see Fig. 10).

Z0ðzÞ ¼ z;

Z1ðzÞ ¼ �
ffiffiffiffiffi
21
p

4
h

z
h=2

� �
� 5
3

z
h=2

� �3" #
;

Table 5

Elements Tij of transfer matrix in three time ranges

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

t1 < x1 0 0 0 0 0 0

x1 < t1 < c1=2x1 IR11 þ I I11 þ 1
2

IR12 þ I I12 þ x1
2

IR13 þ I I13 IR14 þ I I14 IR15 þ I I15 IR16 þ I I16
c1=2x1 < t1 I I11 þ 1 I I12 þ x1 I I13 I I14 I I15 I I16

t1 < x1 0 0 0 0 0 0

x1 < t1 < c1=2x1 IR21 þ I I21 IR22 þ I I22 þ 1
2

IR23 þ I I23 IR24 þ I I24 IR25 þ I I25 IR26 þ I I26
c1=2x1 < t1 I I21 I I22 þ 1 I I23 I I24 I I25 I I26

t1 < x1 0 0 0 0 0 0

x1 < t1 < c1=2x1 IR31 þ I I31 IR32 þ I I32 IR33 þ I I33 IR34 þ I I34 IR35 þ I I35 IR36 þ I I36
c1=2x1 < t1 I I31 I I32 I I33 I I34 I I35 I I36

t1 < x1 0 0 0 0 0 0

x1 < t1 < c1=2x1 IR41 þ I I41 IR42 þ I I42 IR43 þ I I43 IR44 þ I I44 IR45 þ I I45 IR46 þ I I46
c1=2x1 < t1 I I41 I I42 I I43 I I44 I I45 I I46

t1 < x1 0 0 0 0 0 0

x1 < t1 < c1=2x1 IR51 þ I I51 IR52 þ I I52 IR53 þ I I53 IR54 þ I I54 IR55 þ I I55 þ 1
2

IR56 þ I I56 þ x1
2

c1=2x1 < t1 I I51 I I52 I I53 I I54 I I55 þ 1 I I56 þ x1

t1 < x1 0 0 0 0 0 0

x1 < t1 < c1=2x1 IR61 þ I I61 IR62 þ I I62 IR63 þ I I63 IR64 þ I I64 IR65 þ I I65 IR66 þ I I66 þ 1
2

c1=2x1 < t1 I I61 I I62 I I63 I I64 I I65 I I66 þ 1

T. Usuki, A. Maki / International Journal of Solids and Structures 40 (2003) 3737–3785 3767



S0ðzÞ ¼ �
1

8
bh2 1

2
4 � z

h=2

� �235;

S1ðzÞ ¼
ffiffiffiffiffi
21
p

96
bh2 1

2
4 � 6 z

h=2

� �2
þ 5 z

h=2

� �435:
From this, the sectional area of beam A, the warping resistance matrix F, the shearing resistance matrix

R, and the shear correction matrix k0 can be calculated as follows:

A ¼ bh;

F ¼ 1

12
bh3

1 0

0 1

� �
;

R ¼ bh5

1

120
� 1

240
ffiffiffiffiffi
21
p

� 1

240
ffiffiffiffiffi
21
p 1

1080

2
664

3
775;

R�1 ¼ 1

bh5

672

5

144
ffiffiffiffiffi
21
p

5
144

ffiffiffiffiffi
21
p

5

6048

5

2
664

3
775;

k0 ¼
14

15

ffiffiffiffiffi
21
p

5ffiffiffiffiffi
21
p

5

42

5

2
664

3
775:

Poisson�s ratio m is set to

m ¼ 0:29:
The following results represent the case in which six kinds of loadings are all considered ‘‘step (force)

action’’. When we let the dimensionless time at impact be t1 ¼ 0, the distributions of the state quantities in
the beam axis at dimensionless time t1 ¼ 5 are indicated in the order of problem numbers shown in Fig. 11.
This figure shows a distribution in the axial direction for each state quantity with the amount of transverse

Fig. 10. Unit warping function and unit shearing function.
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impact, shown under the line of each problem, being the only unit amount. Items are indicated in the same
row and column order employed in the transfer matrix element �ttij (Appendix B). Therefore, a so-called

Fig. 12. (a) Wave propagation of warping moment My1 at the action of _wwð0Þ1 . (b) Wave propagation of bending moment My0 at the

action of _wwð0Þ1 . (c) Wave propagation of shear force Qz0 at the action of _ww
ð0Þ
1 . (d) Wave propagation of warping momentMy1 at the action

of _hhð0Þy0 . (e) Wave propagation of bending momentMy0 at the action of _hh
ð0Þ
y0 . (f) Wave propagation of shear force Qz0 at the action of

_hhð0Þy0 .

(g) Wave propagation of warping moment My1 at the action of _hh
ð0Þ
y1 . (h) Wave propagation of bending momentMy0 at the action of _hh

ð0Þ
y1 .

(i) Wave propagation of shear force Qz0 at the action of
_hhð0Þy1 . (j) Wave propagation of warping moment My1 at the action of M

ð0Þ
y1 .

(k) Wave propagation of bending moment My0 at the action of M
ð0Þ
y1 . (l) Wave propagation of shear force Qz0 at the action of M

ð0Þ
y1 .

(m) Wave propagation of warping moment My1 at the action of M
ð0Þ
y0 . (n) Wave propagation of bending moment My0 at the action of

M
ð0Þ
y0 . (o) Wave propagation of shear force Qz0 at the action ofM

ð0Þ
y0 . (p) Wave propagation of warping momentMy1 at the action of Q

ð0Þ
z0 .

(q) Wave propagation of bending moment My0 at the action of Q
ð0Þ
z0 . (r) Wave propagation of shear force Qz0 at the action of Q

ð0Þ
z0 .
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‘‘reciprocal relation’’ is observed about the subsidiary diagonal line. This reciprocal relation always holds,

regardless of time.

Let us compare the calculation result from our theory (solid line) with that from the Bernoulli/Euler

Beam theory (dotted line) and that from the Timoshenko Beam theory (broken line). The B/E beam does

not include a longitudinal wave, so it turns out to be a single smooth transit line without discontinuity. The

Timoshenko beam includes a transverse wave and a longitudinal wave; thus, a clear discontinuity exists at

the point at which they separate. Although similar to the solution obtained from the Timoshenko beam
theory, the solution obtained from our theory deviates slightly because we overlapped two kinds of

Fig. 12 (continued)
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longitudinal waves of warping. The difference between the result obtained from the Timoshenko beam

theory (broken line) and that obtained from our proposed higher-order beam theory (solid line) lies in the
effect of nonlinear warping. Also, the rotation of cross section _hhy1ðt1; x1Þ and its warping moment My1ðt1; x1Þ
for nonlinear warping in the first step, indicated in the third and fourth lines and the third and fourth

columns of Fig. 11, represent the newly solved distribution for the higher-order beam theory. Deformation

and its corresponding stress resultants, except at the area of the starting edge, are almost equally distri-

buted. Distributions of these shapes show a more radical change between positive and negative than do the

Fig. 12 (continued)
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ordinary state quantities. Positive and negative are reinversed at the portion of the preceding longitudinal

wave and the following transverse wave. From this, we know that the direction of nonlinear warping

displacement is reversed. The usual bending moment and the new warping moment are made identical in

their warping resistance moment; therefore, a simple comparison of their quantities can be made. In our

theory, from Fig. 11 we can estimate the effect of nonlinear warping to be approximately 10–20% of the

conventional linear warping.
Fig. 12 shows how the waves of stress resultants propagate with time. The left edge of our side is a free

end of a semi-infinite beam to which a transverse impact is to be applied. The beam axis extends infinitely to

Fig. 12 (continued)
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the right. With time, the wave propagation of each stress resultant toward the depth direction on the paper

can be observed in each problem. The wave propagating with longitudinal velocity c1 is quick and thus
leads the other. The wave that propagates at the transversal velocity c2 is slow and thus follows the leading
wave. However, the crest of the transversal wave lags behind the leading edge of the longitudinal wave;

thereby, the distance between the two eventually increases. The distribution of the stress resultants in the

beam-axial direction is indicated at specific times t1 ¼ 2, 4, 6, 8 shown in the lower part of Fig. 12.

8. Conclusions

We have derived a higher-order beam theory using the Reissner functional and considering nonlinear

warping, and, on the basis of its governing equation, analyzed the effect of nonlinear warping. Our solution

uses the Laplace transform technique, which becomes an exact solution within the assumed range of the

governing differential equation. In theory, any terms of higher-order nonlinear warping can be included.
However, mathematically, calculations including a complex integral are very complicated and require

enormous effort. In this study, we considered only the first term of nonlinear warping and solved the so-

lution for space for which the matrices are Laplace-transformed as well as inversely transformed. As a

numerical example, we dealt with suddon transverse loading to the edge of a semi-infinite beam.

Although the integrand of the complex integral is complicated, its value is controlled by the transition in

value of several kinds of characteristic roots on the real and imaginary axes. Namely, so long as we clarify

the passage of changes of characteristic roots into other characteristic roots along the branch cut, we can

trace the transition of the integrand itself. By grasping these specific characteristics, we can obtain an
analytical, correct, and rapid solution without use of numerical integration. For this paper, we used

mathematical processing software,Mathematica, for the analytical calculation of integration. The following

results were obtained:

(1) In the integrand which appears at the Laplace inverse transform for the impact problem of a beam, the

branch point and pole are identical.

Fig. 12 (continued)

3774 T. Usuki, A. Maki / International Journal of Solids and Structures 40 (2003) 3737–3785



(2) Depending on the types of characteristic roots, specific section between some branch points on the real

and imaginary axes may or may not contribute to the integral value.

(3) The pole of order 1/2 and the pole of order 1 that is affected by bifurcation at the origin do not con-

tribute to the integral values; however, the pole of order 1 that is not affected by bifurcation at the ori-
gin does contribute to the integral value as a constant. The pole of order 3/2 contributes to the integral

value as a linear function of x.

By applying a transverse impact to the edge of a semi-infinite beam, we investigated beam behavior.

Then, we compared the solution of linear warping of the B/E beam, that of the Timoshenko beam, and that

of our higher-order beam theory. The results are as follows:

(1) As compared with the B/E beam theory, the Timoshenko beam theory and the higher-order beam the-
ory yield superior results.

(2) The solution of the higher-order beam which includes nonlinear warping shows a better result than that

of the Timoshenko beam with only linear warping.

(3) Cross-sectional rotation and warping moment for nonlinear warping show similar distribution in the

axial direction, except for the vicinity of the beam edge.

(4) As compared with the conventional state functions, the state functions for nonlinear warping are more

radical in change between positive and negative; however, the degree of effect is about 10–20% that of

linear warping.
(5) The components of nonlinear warping for transversal and longitudinal wave are, in general, opposite in

direction.

In ordinary space, elements of the field transfer matrix exhibit symmetry with respect to the subsidiary

diagonal line if stress resultants and deformations are properly defined. In this study, we have shown that,

even in the wave-number domain where the governing equation is Laplace-transformed or in the time

domain which is inversely transformed, symmetry with respect to the subsidiary diagonal line, the so-called

reciprocal relation, can be obtained by properly defining the stress resultants. We have shown this ana-
lytically and with numerical examples.

In this paper, only flexural wave propagation along the beam axis accompanied by vertical deflection

was treated. Coupling problems with other modes, i.e. longitudinal wave, torsional wave and flexural wave

accompanied by horizontal deflection, can be solved by superposition after orthogonalization of the general

eigenvalue problem. Treatment of other deformation modes is generally the same as in this paper, except

for minor changes to the differential equations.

The formulation was treated rigorously in this paper. To the best knowledge of the authors, there have

been very few closed-form solutions of transfer matrix elements from sixth-order differential equations.
Such a solution and procedure is expected to provide many beneficial suggestions to near-field problems.

This analytical solution can be used to examine the accuracy of approximate numerical solutions. Fur-

thermore, as the transfer matrix elements are convertible to a stiffness matrix, closed-form solutions of the

stiffness matrix elements can be readily obtained. Here, two solutions were given; matrix elements for

a finite beam, and matrix elements for a semi-infinite beam. For extremely long beams, Usuki and

Nakamura�s modified transfer matrix method (Usuki and Nakamura, 1986) can be used.

Appendix A. Elements of field transfer matrix for a semi-infinite beam in frequency domain

t11 ¼ t66 ¼
X3
j¼1

k2j � p2
� �

k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;
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t21 ¼ t65 ¼
X3
j¼1

p2 k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t31 ¼ t64 ¼ �
k10
k00

X3
j¼1

p2ðk2j � p2Þ

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t41 ¼ t63 ¼ �
k10
k00

X3
j¼1

p2ðk2j � p2Þ

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t51 ¼ t62 ¼
X3
j¼1

p2 k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i
k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t61 ¼ �
X3
j¼1

p2 k2j � p2
� �

k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t12 ¼ t56 ¼ �
X3
j¼1

kj k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i
k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t22 ¼ t55 ¼ �
X3
j¼1

�p2 þ ðk2jþ1 � p2Þðk2jþ2 � p2Þ

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t32 ¼ t54 ¼
k10
k00

X3
j¼1

p2

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t42 ¼ t53 ¼
k10
k00

X3
j¼1

kjp2

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t52 ¼ �
X3
j¼1

kj �p2 þ ðk2jþ1 � p2Þðk2jþ2 � p2Þ
h i

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t13 ¼ t46 ¼
k10
k00

X3
j¼1

kjðk2j � p2Þ

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t23 ¼ t45 ¼
k10
k00

X3
j¼1

p2

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;
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t33 ¼ t44 ¼ �
X3
j¼1

p2 þ ðk2j � p2Þðk2j � cp2Þ

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t43 ¼ �
X3
j¼1

kj p2 þ ðk2j � p2Þðk2j � cp2Þ
h i

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t14 ¼ t36 ¼
k10
k00

X3
j¼1

ðk2j � p2Þ

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t24 ¼ t35 ¼
k10
k00

X3
j¼1

p2

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t34 ¼ �
X3
j¼1

p2 þ ðk2j � p2Þðk2j � cp2Þ

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t15 ¼ t26 ¼ �
X3
j¼1

k2jþ1 þ k2jþ2 � ð1þ cÞp2

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

t25 ¼ �
X3
j¼1

�p2 þ ðk2jþ1 � p2Þðk2jþ2 � p2Þ
kjðk2jþ2 � k2j Þðk

2
j � k2jþ1Þ

e�kjx1 ;

t16 ¼ �
X3
j¼1

kj k2j � p2
� �

k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i

p2 k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 :

Appendix B. Elements of field transfer matrix for a semi-infinite beam in time domain

�tt11 ¼ �tt66 ¼
X3
j¼1

k2j � p2
� �

k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i

p k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt21 ¼ �tt65 ¼
X3
j¼1

p k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt31 ¼ �tt64 ¼ �
k10
k00

X3
j¼1

pðk2j � p2Þ

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;
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�tt41 ¼ �tt63 ¼ �
k10
k00

X3
j¼1

ðk2j � p2Þ

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt51 ¼ �tt62 ¼
X3
j¼1

k2jþ1 þ k2jþ2 � ð1þ cÞp2

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt61 ¼ �
X3
j¼1

k2j � p2
� �

k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt12 ¼ �tt56 ¼ �
X3
j¼1

kj k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i
p k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt22 ¼ �tt55 ¼ �
X3
j¼1

�p2 þ ðk2jþ1 � p2Þðk2jþ2 � p2Þ

p k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt32 ¼ �tt54 ¼
k10
k00

X3
j¼1

p

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt42 ¼ �tt53 ¼
k10
k00

X3
j¼1

kj

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt52 ¼ �
X3
j¼1

kj �p2 þ ðk2jþ1 � p2Þðk2jþ2 � p2Þ
h i
p2 k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt13 ¼ �tt46 ¼
k10
k00

X3
j¼1

kjðk2j � p2Þ

p k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt23 ¼ �tt45 ¼
k10
k00

X3
j¼1

p

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt33 ¼ �tt44 ¼ �
X3
j¼1

p2 þ ðk2j � p2Þðk2j � cp2Þ

p k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt43 ¼ �
X3
j¼1

kj p2 þ ðk2j � p2Þðk2j � cp2Þ
h i
p2 k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;
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�tt14 ¼ �tt36 ¼
k10
k00

X3
j¼1

ðk2j � p2Þ

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt24 ¼ �tt35 ¼
k10
k00

X3
j¼1

p2

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt34 ¼ �
X3
j¼1

p2 þ ðk2j � p2Þðk2j � cp2Þ

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt15 ¼ �tt26 ¼ �
X3
j¼1

k2jþ1 þ k2jþ2 � ð1þ cÞp2

k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt25 ¼ �
X3
j¼1

�p2 þ ðk2jþ1 � p2Þðk2jþ2 � p2Þ

kj k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 ;

�tt16 ¼ �
X3
j¼1

kj k2j � p2
� �

k2jþ1 þ k2jþ2 � ð1þ cÞp2
h i

p2 k2jþ2 � k2j

� �
k2j � k2jþ1

� � e�kjx1 :

Appendix C. Integral expressions used in Table 5

IR11 ¼ IR66 ¼ �2
Z p1

0

ðk21 � p2Þ½k22 þ k23 � ð1þ cÞp2�
pðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1

(
� qt1Þ

� ðk
2
2 � p2Þ½k23 þ k21 � ð1þ cÞp2�

pðk21 � k22Þðk
2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

þ 2
Z p3

p2

ðk23 � p2Þ½k21 þ k22 � ð1þ cÞp2�
pðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1

(
� qt1Þ

� ðk
2
1 � p2Þ½k22 þ k23 � ð1þ cÞp2�

pðk23 � k21Þðk
2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;

I I11 ¼ I I66 ¼ 4
Z pi2

0

ðk22 � p2Þ½k23 þ k21 � ð1þ cÞp2�
pðk21 � k22Þðk

2
2 � k23Þ

sinh k2x1 sin qt1 dq

þ 4
Z pi3

0

ðk23 � p2Þ½k21 þ k22 � ð1þ cÞp2�
pðk22 � k23Þðk

2
3 � k21Þ

sinh k3x1 sin qt1 dq;
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IR21 ¼ IR65 ¼ 2
Z p1

0

p½k22 þ k23 � ð1þ cÞp2�
k1ðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1

(
� qt1Þ �

p½k23 þ k21 � ð1þ cÞp2�
k2ðk21 � k22Þðk

2
2 � k23Þ

sinhðk2x1 � qt1Þ
)
dq

� 2
Z p3

p2

p½k21 þ k22 � ð1þ cÞp2�
k3ðk22 � k23Þðk

2
3 � k21Þ

sinhðk3x1

(
� qt1Þ �

p½k22 þ k23 � ð1þ cÞp2�
k1ðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1 � qt1Þ
)
dq;

I I21 ¼ I I65 ¼ �4
Z pi2

0

p½k23 þ k21 � ð1þ cÞp2�
k2ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 sin qt1 dq

� 4
Z pi3

0

p½k21 þ k22 � ð1þ cÞp2�
k3ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 sin qt1 dq;

IR31 ¼ IR64

¼ �2 k10
k00

Z p1

0

pðk21 � p2Þ
k1ðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1

8<
: � qt1Þ �

pðk22 � p2Þ
k2ðk21 � k22Þðk

2
2 � k23Þ

sinhðk2x1 � qt1Þ

9=
;dq

þ 2 k10
k00

Z p3

p2

pðk23 � p2Þ
k3ðk22 � k23Þðk

2
3 � k21Þ

sinhðk3x1

8<
: � qt1Þ �

pðk21 � p2Þ
k1ðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1 � qt1Þ

9=
;dq;

I I31 ¼ I I64 ¼ 4
k10
k00

Z pi2

0

pðk22 � p2Þ
k2ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 sin qt1 dq

þ 4 k10
k00

Z pi3

0

pðk23 � p2Þ
k3ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 sin qt1 dq;

IR41 ¼ IR63 ¼ �IR14 ¼ �IR36

¼ �2 k10
k00

Z p1

0

ðk21 � p2Þ
ðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1

(
� qt1Þ �

ðk22 � p2Þ
ðk21 � k22Þðk

2
2 � k23Þ

sinhðk2x1 � qt1Þ
)
dq

þ 2 k10
k00

Z p3

p2

ðk23 � p2Þ
ðk22 � k23Þðk

2
3 � k21Þ

sinhðk3x1

(
� qt1Þ �

ðk21 � p2Þ
ðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1 � qt1Þ
)
dq;

I I41 ¼ I I63 ¼ �I I14 ¼ �I I36 ¼ 4i
k10
k00

Z pi2

0

ðk22 � p2Þ
ðk21 � k22Þðk

2
2 � k23Þ

sinh k2x1 cos qt1 dq

þ 4i k10
k00

Z pi3

0

ðk23 � p2Þ
ðk22 � k23Þðk

2
3 � k21Þ

sinh k3x1 cos qt1 dq;

IR51 ¼ IR62 ¼ �IR15 ¼ �IR26

¼ 2
Z p1

0

k22 þ k23 � ð1þ cÞp2

ðk23 � k21Þðk
2
1 � k22Þ

sinhðk1x1

(
� qt1Þ �

k23 þ k21 � ð1þ cÞp2

ðk21 � k22Þðk
2
2 � k23Þ

sinhðk2x1 � qt1Þ
)
dq

� 2
Z p3

p2

k21 þ k22 � ð1þ cÞp2

ðk22 � k23Þðk
2
3 � k21Þ

sinhðk3x1

(
� qt1Þ �

k22 þ k23 � ð1þ cÞp2

ðk23 � k21Þðk
2
1 � k22Þ

sinhðk1x1 � qt1Þ
)
dq;
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I I51 ¼ I I62 ¼ �I I15 ¼ �I I26

¼ �4i
Z pi2

0

k23 þ k21 � ð1þ cÞp2

ðk21 � k22Þðk
2
2 � k23Þ

sinh k2x1 cos qt1 dq� 4i
Z pi3

0

k21 þ k22 � ð1þ cÞp2

ðk22 � k23Þðk
2
3 � k21Þ

sinh k3x1 cos qt1 dq;

IR61 ¼ 2
Z p1

0

ðk21 � p2Þ½k22 þ k23 � ð1þ cÞp2�
k1ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ
(

� ðk
2
2 � p2Þ½k23 þ k21 � ð1þ cÞp2�

k2ðk21 � k22Þðk
2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

� 2
Z p3

p2

ðk23 � p2Þ½k21 þ k22 � ð1þ cÞp2�
k3ðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1

(
� qt1Þ

� ðk
2
1 � p2Þ½k22 þ k23 � ð1þ cÞp2�

k1ðk23 � k21Þðk
2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;

I I61 ¼ �4i
Z pi2

0

ðk22 � p2Þ½k23 þ k21 � ð1þ cÞp2�
k2ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 cos qt1 dq

� 4i
Z pi3

0

ðk23 � p2Þ½k21 þ k22 � ð1þ cÞp2�
k3ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 cos qt1 dq;

IR12 ¼ IR56

¼ �2
Z p1

0

k1½k22 þ k23 � ð1þ cÞp2�
pðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1

8><
>: � qt1Þ �

k2½k23 þ k21 � ð1þ cÞp2�
pðk21 � k22Þðk

2
2 � k23Þ

sinhðk2x1 � qt1Þ

9>=
>;dq

þ 2
Z p3

p2

k3½k21 þ k22 � ð1þ cÞp2�
pðk22 � k23Þðk

2
3 � k21Þ

sinhðk3x1

8><
>: � qt1Þ �

k1½k22 þ k23 � ð1þ cÞp2�
pðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1 � qt1Þ

9>=
>;dq;

I I12 ¼ I I56 ¼ 4
Z pi2

0

k2½k23 þ k21 � ð1þ cÞp2�
pðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 sin qt1 dq

þ 4
Z pi3

0

k3½k21 þ k22 � ð1þ cÞp2�
pðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 sin qt1 dq;

IR22 ¼ IR55 ¼ 2
Z p1

0

�p2 þ ðk22 � p2Þðk23 � p2Þ
pðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1

(
� qt1Þ

� �p2 þ ðk23 � p2Þðk21 � p2Þ
pðk21 � k22Þðk

2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

� 2
Z p3

p2

�p2 þ ðk21 � p2Þðk22 � p2Þ
pðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1

(
� qt1Þ

� �p2 þ ðk22 � p2Þðk23 � p2Þ
pðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;
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I I22 ¼ I I55 ¼ �4
Z pi2

0

�p2 þ ðk23 � p2Þðk21 � p2Þ
pðk21 � k22Þðk

2
2 � k23Þ

sinh k2x1 sin qt1 dq

� 4
Z pi3

0

�p2 þ ðk21 � p2Þðk22 � p2Þ
pðk22 � k23Þðk

2
3 � k21Þ

sinh k3x1 sin qt1 dq;

IR32 ¼ IR23 ¼ IR45 ¼ IR54

¼ �2 k10
k00

Z p1

0

p

ðk23 � k21Þðk
2
1 � k22Þ

coshðk1x1

(
� qt1Þ �

p

ðk21 � k22Þðk
2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

þ 2 k10
k00

Z p3

p2

p

ðk22 � k23Þðk
2
3 � k21Þ

coshðk3x1

(
� qt1Þ �

p

ðk23 � k21Þðk
2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;

I I32 ¼ I I23 ¼ I I45 ¼ I I54 ¼ 4
k10
k00

Z pi2

0

p

ðk21 � k22Þðk
2
2 � k23Þ

sinh k2x1 sin qt1 dq

þ 4 k10
k00

Z pi3

0

p

ðk22 � k23Þðk
2
3 � k21Þ

sinh k3x1 sin qt1 dq;

IR42 ¼ IR53

¼ �2 k10
k00

Z p1

0

k1
ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1

(
� qt1Þ �

k2
ðk21 � k22Þðk

2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

þ 2 k10
k00

Z p3

p2

k3
ðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1

(
� qt1Þ �

k1
ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;

I I42 ¼ I I53 ¼ 4i
k10
k00

Z pi2

0

k2
ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 cos qt1 dq

þ 4i k10
k00

Z pi3

0

k3
ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 cos qt1 dq;

IR52 ¼ 2
Z p1

0

k1½�p2 þ ðk22 � p2Þðk23 � p2Þ�
p2ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1

(
� qt1Þ

� k2½�p2 þ ðk23 � p2Þðk21 � p2Þ�
p2ðk21 � k22Þðk

2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

� 2
Z p3

p2

k3½�p2 þ ðk21 � p2Þðk22 � p2Þ�
p2ðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1

(
� qt1Þ

� k1½�p2 þ ðk22 � p2Þðk23 � p2Þ�
p2ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;
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I I52 ¼ �4i
Z pi2

0

k2½�p2 þ ðk23 � p2Þðk21 � p2Þ�
p2ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 cos qt1 dq

� 4i
Z pi3

0

k3½�p2 þ ðk21 � p2Þðk22 � p2Þ�
p2ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 cos qt1 dq;

IR13 ¼ IR46

¼ 2 k10
k00

Z p1

0

k1ðk21 � p2Þ
pðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1

(
� qt1Þ �

k2ðk22 � p2Þ
pðk21 � k22Þðk

2
2 � k23Þ

sinhðk2x1 � qt1Þ
)
dq

� 2 k10
k00

Z p3

p2

k3ðk23 � p2Þ
pðk22 � k23Þðk

2
3 � k21Þ

sinhðk3x1

(
� qt1Þ �

k1ðk21 � p2Þ
pðk23 � k21Þðk

2
1 � k22Þ

sinhðk1x1 � qt1Þ
)
dq;

I I13 ¼ I I46 ¼ �4
k10
k00

Z pi2

0

k2ðk22 � p2Þ
pðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 sin qt1 dq

� 4 k10
k00

Z pi3

0

k3ðk23 � p2Þ
pðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 sin qt1 dq;

IR33 ¼ IR44

¼ 2
Z p1

0

p2 þ ðk21 � p2Þðk21 � cp2Þ
pðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ �
p2 þ ðk22 � p2Þðk22 � cp2Þ

pðk21 � k22Þðk
2
2 � k23Þ

coshðk2x1 � qt1Þ

8<
:

9=
;dq

� 2
Z p3

p2

p2 þ ðk23 � p2Þðk23 � cp2Þ
pðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1 � qt1Þ �
p2 þ ðk21 � p2Þðk21 � cp2Þ

pðk23 � k21Þðk
2
1 � k22Þ

coshðk1x1 � qt1Þ

8<
:

9=
;dq;

I I33 ¼ I I44 ¼ �4
Z pi2

0

p2 þ ðk22 � p2Þðk22 � cp2Þ
pðk21 � k22Þðk

2
2 � k23Þ

sinh k2x1 sin qt1 dq

� 4
Z pi3

0

p2 þ ðk23 � p2Þðk23 � cp2Þ
pðk22 � k23Þðk

2
3 � k21Þ

sinh k3x1 sin qt1 dq;

IR43 ¼ 2
Z p1

0

k1½p2 þ ðk21 � p2Þðk21 � cp2Þ�
p2ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1

(
� qt1Þ

� k2½p2 þ ðk22 � p2Þðk22 � cp2Þ�
p2ðk21 � k22Þðk

2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

� 2
Z p3

p2

k3½p2 þ ðk23 � p2Þðk23 � cp2Þ�
p2ðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1

(
� qt1Þ

� k1½p2 þ ðk21 � p2Þðk21 � cp2Þ�
p2ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;
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I I43 ¼ �4i
Z pi2

0

k2½p2 þ ðk22 � p2Þðk22 � cp2Þ�
p2ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 cos qt1 dq

� 4i
Z pi3

0

k3½p2 þ ðk23 � p2Þðk23 � cp2Þ�
p2ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 cos qt1 dq;

IR24 ¼ IR35

¼ �2 k10
k00

Z p1

0

p2

k1ðk23 � k21Þðk
2
1 � k22Þ

coshðk1x1 � qt1Þ �
p2

k2ðk21 � k22Þðk
2
2 � k23Þ

coshðk2x1 � qt1Þ

8<
:

9=
;dq

þ 2 k10
k00

Z p3

p2

p2

k3ðk22 � k23Þðk
2
3 � k21Þ

coshðk3x1 � qt1Þ �
p2

k1ðk23 � k21Þðk
2
1 � k22Þ

coshðk1x1 � qt1Þ

8<
:

9=
;dq;

I I24 ¼ I I35 ¼ 4i
k10
k00

Z pi2

0

p2

k2ðk21 � k22Þðk
2
2 � k23Þ

cosh k2x1 cos qt1 dq

þ 4i k10
k00

Z pi3

0

p2

k3ðk22 � k23Þðk
2
3 � k21Þ

cosh k3x1 cos qt1 dq;

IR34 ¼ 2
Z p1

0

p2 þ ðk21 � p2Þðk21 � cp2Þ
k1ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ �
p2 þ ðk22 � p2Þðk22 � cp2Þ

k2ðk21 � k22Þðk
2
2 � k23Þ

coshðk2x1 � qt1Þ

8<
:

9=
;dq

� 2
Z p3

p2

p2 þ ðk23 � p2Þðk23 � cp2Þ
k3ðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1 � qt1Þ �
p2 þ ðk21 � p2Þðk21 � cp2Þ

k1ðk23 � k21Þðk
2
1 � k22Þ

coshðk1x1 � qt1Þ

8<
:

9=
;dq;

I I34 ¼ �4i
Z pi2

0

p2 þ ðk22 � p2Þðk22 � cp2Þ
k2ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 cos qt1 dq

� 4i
Z pi3

0

p2 þ ðk23 � p2Þðk23 � cp2Þ
k3ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 cos qt1 dq;

IR25 ¼ 2
Z p1

0

�p2 þ ðk22 � p2Þðk23 � p2Þ
k1ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1

(
� qt1Þ �

�p2 þ ðk23 � p2Þðk21 � p2Þ
k2ðk21 � k22Þðk

2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

� 2
Z p3

p2

�p2 þ ðk21 � p2Þðk22 � p2Þ
k3ðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1

(
� qt1Þ �

�p2 þ ðk22 � p2Þðk23 � p2Þ
k1ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;

I I25 ¼ �4i
Z pi2

0

�p2 þ ðk23 � p2Þðk21 � p2Þ
k2ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 cos qt1 dq

� 4i
Z pi3

0

�p2 þ ðk21 � p2Þðk22 � p2Þ
k3ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 cos qt1 dq;
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IR16 ¼ 2
Z p1

0

k1ðk21 � p2Þ½k22 þ k23 � ð1þ cÞp2�
p2ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1

(
� qt1Þ

� k2ðk22 � p2Þ½k23 þ k21 � ð1þ cÞp2�
p2ðk21 � k22Þðk

2
2 � k23Þ

coshðk2x1 � qt1Þ
)
dq

� 2
Z p3

p2

k3ðk23 � p2Þ½k21 þ k22 � ð1þ cÞp2�
p2ðk22 � k23Þðk

2
3 � k21Þ

coshðk3x1

(
� qt1Þ

� k1ðk21 � p2Þ½k22 þ k23 � ð1þ cÞp2�
p2ðk23 � k21Þðk

2
1 � k22Þ

coshðk1x1 � qt1Þ
)
dq;

I I16 ¼ �4i
Z pi2

0

k2ðk22 � p2Þ½k23 þ k21 � ð1þ cÞp2�
p2ðk21 � k22Þðk

2
2 � k23Þ

cosh k2x1 cos qt1 dq

� 4i
Z pi3

0

k3ðk23 � p2Þ½k21 þ k22 � ð1þ cÞp2�
p2ðk22 � k23Þðk

2
3 � k21Þ

cosh k3x1 cos qt1 dq:
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